prop.vcv.test {vcvComp} | R Documentation |
Proportionality test of two variance-covariance matrices
Description
Tests the proportionality of two variance-covariance matrices
Usage
prop.vcv.test(n, S1, S2, method = 0, pa = 0)
Arguments
n |
the sample size(s), given as a number or a vector of length 2 |
S1 |
a variance-covariance matrix |
S2 |
a variance-covariance matrix |
method |
an integer for the method of matrix inversion (see function 'minv') |
pa |
an integer for the parameter of matrix inversion (see function 'minv') |
Value
The P-value for the test of proportionality between two variance-covariance matrices
References
Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic Press, London.
See Also
relative.eigen
for the computation of relative eigenvalues,
minv
for the method and the parameter used for the matrix inversion,
pchisq
for Chi-squared distribution
Examples
# Data matrix of 2D landmark coordinates
data("Tropheus.IK.coord")
coords <- which(names(Tropheus.IK.coord) == "X1"):which(names(Tropheus.IK.coord) == "Y19")
proc.coord <- as.matrix(Tropheus.IK.coord[coords])
# Data reduction
phen.pca <- prcomp(proc.coord, rank. = 5, tol = sqrt(.Machine$double.eps))
pc.scores <- phen.pca$x
# Covariance matrix of each population
S.phen.pop <- cov.group(pc.scores, groups = Tropheus.IK.coord$POP.ID)
# Maximum likelihood test of proportionality between 2 covariance matrices
# (IKA1 relative to IKS5) - 71 and 75 are the sample sizes
prop.vcv.test(n = c(71, 75), S.phen.pop[,,"IKA1"], S.phen.pop[,,"IKS5"])
[Package vcvComp version 1.0.2 Index]