| vcrpart-demo {vcrpart} | R Documentation |
Synthetic data sets
Description
Synthetic data for illustrations.
Usage
data(vcrpart_1)
data(vcrpart_2)
data(vcrpart_3)
data(unemp)
Format
yordered factor. The response variable
id, PIDfactor. The subject identification vector.
wavenumeric. The wave identification vector.
treata dummy variable. The treatment effect.
x1, x2numeric predictor variables.
z1, z2, z3, z2moderator (partitioning) variables.
GHQLself rated general happiness.
YEARsurvey year.
UNEMPunemployed or not.
AGEage.
FISITself-reported financial situation.
GENDERgender.
UEREGIONregional unemployment.
See Also
Examples
## --------------------------------------------------------- #
## generating 'vcrpart_1'
## --------------------------------------------------------- #
## create skeletton
set.seed(1)
vcrpart_1 <- data.frame(id = factor(rep(1:50, each = 4)),
wave = rep(1:4, 50),
treat = sample(0:1, 200, TRUE))
## add partitioning variables
vcrpart_1$z1 <- rnorm(50)[vcrpart_1$id]
vcrpart_1$z2 <- rnorm(200)
vcrpart_1$z3 <- factor(sample(1:2, 50, TRUE)[vcrpart_1$id])
vcrpart_1$z4 <- factor(sample(1:2, 200, TRUE))
## simulate response
eta <- 2 * vcrpart_1$treat * (vcrpart_1$z4 == "1")
eta <- eta + rnorm(50)[vcrpart_1$id] + rlogis(200)
vcrpart_1$y <- cut(-eta, c(-Inf, -1, 1, Inf), 1:3,
ordered_result = TRUE)
## --------------------------------------------------------- #
## generating 'vcrpart_2'
## --------------------------------------------------------- #
set.seed(1)
vcrpart_2 <- data.frame(x1 = rnorm(100),
x2 = rnorm(100),
z1 = factor(sample(1:3, 100, TRUE)),
z2 = factor(sample(1:3, 100, TRUE)))
vcrpart_2$y <- vcrpart_2$x1 * (vcrpart_2$z1 == "2") +
2 * vcrpart_2$x1 * (vcrpart_2$z1 == "3")
vcrpart_2$y <- vcrpart_2$y + rnorm(100)
## --------------------------------------------------------- #
## generating 'vcrpart_3'
## --------------------------------------------------------- #
set.seed(1)
vcrpart_3 <- data.frame(x1 = rnorm(100),
z1 = runif(100, -pi/2, pi/2))
vcrpart_3$y <- vcrpart_3$x1 * sin(vcrpart_3$z1) + rnorm(100)
## --------------------------------------------------------- #
## generating 'unemp'
## --------------------------------------------------------- #
## create skeletton
set.seed(1)
unemp <- data.frame(PID = factor(rep(1:50, each = 4)),
UNEMP = rep(c(0, 0, 1, 1), 50),
YEAR = rep(2001:2004, 50))
## add partitioning variables
unemp$AGE <- runif(50, 25, 60)[unemp$PID] + unemp$YEAR - 2000
unemp$FISIT <- ordered(sample(1:5, 200, replace = TRUE))
unemp$GENDER <- factor(sample(c("female", "male"), 50, replace = TRUE)[unemp$PID])
unemp$UEREGION <- runif(50, 0.02, 0.1)[unemp$PID]
## simulate response
eta <- 2 * unemp$UNEMP * (unemp$FISIT == "1" | unemp$FISIT == "2")
eta <- eta + rnorm(50)[unemp$PID] + rlogis(200)
unemp$GHQL <- cut(-eta, c(-Inf, -1, 0, 1, Inf), 1:4,
ordered_result = TRUE)
[Package vcrpart version 1.0-5 Index]