replicate.prop.ps {vcmeta} | R Documentation |
Compares and combines paired-samples proportion differences in original and follow-up studies
Description
This function computes confidence intervals from an original study and a follow-up study where the effect size is a paired-samples proportion difference. Confidence intervals for the difference and average of effect sizes are also computed. The confidence level for the difference is 1 – 2*alpha, which is recommended for equivalence testing.
Usage
replicate.prop.ps(alpha, f1, f2)
Arguments
alpha |
alpha level for 1-alpha confidence |
f1 |
vector of frequency counts for 2x2 table in original study |
f2 |
vector of frequency counts for 2x2 table in follow-up study |
Value
A 4-row matrix. The rows are:
Row 1 summarizes the original study
Row 2 summarizes the follow-up study
Row 3 estimates the difference in proportion differences
Row 4 estimates the average proportion difference
The columns are:
Estimate - proportion difference estimate (single study, difference, average)
SE - standard error
z - z-value
p - p-value
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
References
Bonett DG (2021). “Design and analysis of replication studies.” Organizational Research Methods, 24(3), 513–529. ISSN 1094-4281, doi:10.1177/1094428120911088.
Examples
f1 <- c(42, 2, 15, 61)
f2 <- c(69, 5, 31, 145)
replicate.prop.ps(.05, f1, f2)
# Should return:
# Estimate SE z p
# Original: 0.106557377 0.03440159 3.09745539 1.951898e-03
# Follow-up: 0.103174603 0.02358274 4.37500562 1.214294e-05
# Original - Follow-up: 0.003852359 0.04097037 0.09402793 9.250870e-01
# Average: 0.105511837 0.02048519 5.15064083 2.595979e-07
# LL UL
# Original: 0.03913151 0.17398325
# Follow-up: 0.05695329 0.14939592
# Original - Follow-up: -0.06353791 0.07124263
# Average: 0.06536161 0.14566206