meta.sub.cor {vcmeta} | R Documentation |
Confidence interval for a subgroup difference in average Pearson or partial correlations
Description
Computes the estimate, standard error, and confidence interval for a difference in average Pearson or partial correlations for two mutually exclusive subgroups of studies. Each subgroup can have one or more studies. All of the correlations must be either Pearson correlations or partial correlations.
Usage
meta.sub.cor(alpha, n, cor, s, group)
Arguments
alpha |
alpha level for 1-alpha confidence |
n |
vector of sample sizes |
cor |
vector of estimated correlations |
s |
number of control variables (set to 0 for Pearson) |
group |
vector of group indicators:
|
Value
Returns a matrix with three rows:
Row 1 - estimate for Set A
Row 2 - estimate for Set B
Row 3 - estimate for difference, Set A - Set B
The columns are:
Estimate - estimated average correlation or difference
SE - standard error
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
References
Bonett DG (2008). “Meta-analytic interval estimation for bivariate correlations.” Psychological Methods, 13(3), 173–181. ISSN 1939-1463, doi:10.1037/a0012868.
Examples
n <- c(55, 190, 65, 35)
cor <- c(.40, .65, .60, .45)
group <- c(1, 1, 2, 0)
meta.sub.cor(.05, n, cor, 0, group)
# Should return:
# Estimate SE LL UL
# Set A: 0.525 0.06195298 0.3932082 0.6356531
# Set B: 0.600 0.08128008 0.4171458 0.7361686
# Set A - Set B: -0.075 0.10219894 -0.2645019 0.1387283