meta.lm.spear {vcmeta} | R Documentation |
Meta-regression analysis for Spearman correlations
Description
This function estimates the intercept and slope coefficients in a meta-regression model where the dependent variable is a Fisher-transformed Spearman correlation. The estimates are OLS estimates with robust standard errors that accommodate residual heteroscedasticity. The correlations are Fisher-transformed and hence the parameter estimates do not have a simple interpretation. However, the hypothesis test results can be used to decide if a population slope is either positive or negative.
Usage
meta.lm.spear(alpha, n, cor, X)
Arguments
alpha |
alpha level for 1-alpha confidence |
n |
vector of sample sizes |
cor |
vector of estimated Spearman correlations |
X |
matrix of predictor values |
Value
Returns a matrix. The first row is for the intercept with one additional row per predictor. The matrix has the following columns:
Estimate - OLS estimate
SE - standard error
z - z-value
p - p-value
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
Examples
n <- c(150, 200, 300, 200, 350)
cor <- c(.14, .29, .16, .21, .23)
x1 <- c(18, 25, 23, 19, 24)
X <- matrix(x1, 5, 1)
meta.lm.spear(.05, n, cor, X)
# Should return:
# Estimate SE z p LL UL
# b0 -0.08920088 0.26686388 -0.3342561 0.738 -0.612244475 0.43384271
# b1 0.01370866 0.01190212 1.1517825 0.249 -0.009619077 0.03703639