meta.lm.propratio2 {vcmeta} | R Documentation |
Meta-regression analysis for proportion ratios
Description
This function estimates the intercept and slope coefficients in a meta-regression model where the dependent variable is a log proportion ratio. The estimates are OLS estimates with robust standard errors that accommodate residual heteroscedasticity. The exponentiated slope estimate for a predictor variable describes a multiplicative change in the proportion ratio associated with a 1-unit increase in that predictor variable, controlling for all other predictor variables in the model.
Usage
meta.lm.propratio2(alpha, f1, f2, n1, n2, X)
Arguments
alpha |
alpha level for 1-alpha confidence |
f1 |
vector of group 1 frequency counts |
f2 |
vector of group 2 frequency counts |
n1 |
vector of group 1 sample sizes |
n2 |
vector of group 2 sample sizes |
X |
matrix of predictor values |
Value
Returns a matrix. The first row is for the intercept with one additional row per predictor. The matrix has the following columns:
Estimate - OLS estimate
SE - standard error
z - z-value
p - p-value
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
exp(Estimate) - the exponentiated estimate
exp(LL) - lower limit of the exponentiated confidence interval
exp(UL) - upper limit of the exponentiated confidence interval
References
Price RM, Bonett DG (2008). “Confidence intervals for a ratio of two independent binomial proportions.” Statistics in Medicine, 27(26), 5497–5508. ISSN 02776715, doi:10.1002/sim.3376.
Examples
n1 <- c(204, 201, 932, 130, 77)
n2 <- c(106, 103, 415, 132, 83)
f1 <- c(24, 40, 93, 14, 5)
f2 <- c(12, 9, 28, 3, 1)
x1 <- c(4, 4, 5, 3, 26)
x2 <- c(1, 1, 1, 0, 0)
X <- matrix(cbind(x1, x2), 5, 2)
meta.lm.propratio2(.05, f1, f2, n1, n2, X)
# Should return:
# Estimate SE z p LL UL
# b0 1.4924887636 0.69172794 2.15762393 0.031 0.13672691 2.84825062
# b1 0.0005759509 0.04999884 0.01151928 0.991 -0.09741998 0.09857188
# b2 -1.0837844594 0.59448206 -1.82307345 0.068 -2.24894789 0.08137897
# exp(Estimate) exp(LL) exp(UL)
# b0 4.4481522 1.1465150 17.257565
# b1 1.0005761 0.9071749 1.103594
# b2 0.3383128 0.1055102 1.084782