meta.lm.prop.ps {vcmeta} | R Documentation |
Meta-regression analysis for paired-samples proportion differences
Description
This function estimates the intercept and slope coefficients in a meta-regression model where the dependent variable is a paired-samples proportion difference. The estimates are OLS estimates with robust standard errors that accommodate residual heteroscedasticity.
Usage
meta.lm.prop.ps(alpha, f11, f12, f21, f22, X)
Arguments
alpha |
alpha level for 1-alpha confidence |
f11 |
vector of frequency counts in cell 1,1 |
f12 |
vector of frequency counts in cell 1,2 |
f21 |
vector of frequency counts in cell 2,1 |
f22 |
vector of frequency counts in cell 2,2 |
X |
matrix of predictor values |
Value
Returns a matrix. The first row is for the intercept with one additional row per predictor. The matrix has the following columns:
Estimate - OLS estimate
SE - standard error
z - z-value
p - p-value
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
References
Bonett DG, Price RM (2014). “Meta-analysis methods for risk differences.” British Journal of Mathematical and Statistical Psychology, 67(3), 371–387. ISSN 00071102, doi:10.1111/bmsp.12024.
Examples
f11 <- c(40, 20, 25, 30)
f12 <- c(3, 2, 2, 1)
f21 <- c(7, 6, 8, 6)
f22 <- c(26, 25, 13, 25)
x1 <- c(1, 1, 4, 6)
x2 <- c(1, 1, 0, 0)
X <- matrix(cbind(x1, x2), 4, 2)
meta.lm.prop.ps(.05, f11, f12, f21, f22, X)
# Should return:
# Estimate SE z p LL UL
# b0 -0.21113402 0.21119823 -0.9996960 0.317 -0.62507494 0.20280690
# b1 0.02185567 0.03861947 0.5659236 0.571 -0.05383711 0.09754845
# b2 0.12575138 0.17655623 0.7122455 0.476 -0.22029248 0.47179524