meta.lm.meanratio.ps {vcmeta} | R Documentation |
Meta-regression analysis for paired-samples log mean ratios
Description
This function estimates the intercept and slope coefficients in a meta-regression model where the dependent variable is a paired-samples log mean ratio. The estimates are OLS estimates with robust standard errors that accommodate residual heteroscedasticity. The exponentiated slope estimate for a predictor variable describes a multiplicative change in the mean ratio associated with a 1-unit increase in that predictor variable, controlling for all other predictor variables in the model.
Usage
meta.lm.meanratio.ps(alpha, m1, m2, sd1, sd2, cor, n, X)
Arguments
alpha |
alpha level for 1-alpha confidence |
m1 |
vector of estimated means for measurement 1 |
m2 |
vector of estimated means for measurement 2 |
sd1 |
vector of estimated SDs for measurement 1 |
sd2 |
vector of estimated SDs for measurement 2 |
cor |
vector of estimated correlations for paired measurements |
n |
vector of sample sizes |
X |
matrix of predictor values |
Value
Returns a matrix. The first row is for the intercept with one additional row per predictor. The matrix has the following columns:
Estimate - OLS estimate
SE - standard error
z - z-value
p - p-value
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
exp(Estimate) - the exponentiated estimate
exp(LL) - lower limit of the exponentiated confidence interval
exp(UL) - upper limit of the exponentiated confidence interval
Examples
n <- c(65, 30, 29, 45, 50)
cor <- c(.87, .92, .85, .90, .88)
m1 <- c(20.1, 20.5, 19.3, 21.5, 19.4)
m2 <- c(10.4, 10.2, 8.5, 10.3, 7.8)
sd1 <- c(9.3, 9.9, 10.1, 10.5, 9.8)
sd2 <- c(7.8, 8.0, 8.4, 8.1, 8.7)
x1 <- c(2, 3, 3, 4, 4)
X <- matrix(x1, 5, 1)
meta.lm.meanratio.ps(.05, m1, m2, sd1, sd2, cor, n, X)
# Should return:
# Estimate SE LL UL z p
# b0 0.50957008 0.13000068 0.254773424 0.7643667 3.919749 0.000
# b1 0.07976238 0.04133414 -0.001251047 0.1607758 1.929697 0.054
# exp(Estimate) exp(LL) exp(UL)
# b0 1.664575 1.2901693 2.147634
# b1 1.083030 0.9987497 1.174422