| meta.lm.mean2 {vcmeta} | R Documentation | 
Meta-regression analysis for 2-group mean differences
Description
This function estimates the intercept and slope coefficients in a meta-regression model where the dependent variable is a 2-group mean difference. The estimates are OLS estimates with robust standard errors that accommodate residual heteroscedasticity.
Usage
meta.lm.mean2(alpha, m1, m2, sd1, sd2, n1, n2, X)
Arguments
| alpha | alpha level for 1-alpha confidence | 
| m1 | vector of estimated means for group 1 | 
| m2 | vector of estimated means for group 2 | 
| sd1 | vector of estimated SDs for group 1 | 
| sd2 | vector of estimated SDs for group 2 | 
| n1 | vector of group 1 sample sizes | 
| n2 | vector of group 2 sample sizes | 
| X | matrix of predictor values | 
Value
Returns a matrix. The first row is for the intercept with one additional row per predictor. The matrix has the following columns:
- Estimate - OLS estimate 
- SE - standard error 
- t - t-value 
- p - p-value 
- LL - lower limit of the confidence interval 
- UL - upper limit of the confidence interval 
- df - degrees of freedom 
References
Bonett DG (2009). “Meta-analytic interval estimation for standardized and unstandardized mean differences.” Psychological Methods, 14(3), 225–238. ISSN 1939-1463, doi:10.1037/a0016619.
Examples
n1 <- c(65, 30, 29, 45, 50)
n2 <- c(67, 32, 31, 20, 52)
m1 <- c(31.1, 32.3, 31.9, 29.7, 33.0)
m2 <- c(34.1, 33.2, 30.6, 28.7, 26.5)
sd1 <- c(7.1, 8.1, 7.8, 6.8, 7.6)
sd2 <- c(7.8, 7.3, 7.5, 7.2, 6.8)
x1 <- c(4, 6, 7, 7, 8)
x2 <- c(1, 0, 0, 0, 1)
X <- matrix(cbind(x1, x2), 5, 2)
meta.lm.mean2(.05, m1, m2, sd1, sd2, n1, n2, X)
# Should return:
#    Estimate        SE         t     p         LL        UL  df
# b0   -15.20 3.4097610 -4.457791 0.000 -21.902415 -8.497585 418
# b1     2.35 0.4821523  4.873979 0.000   1.402255  3.297745 418
# b2     2.85 1.5358109  1.855697 0.064  -0.168875  5.868875 418