meta.lc.mean.ps {vcmeta} | R Documentation |
Confidence interval for a linear contrast of mean differences from paired-samples studies
Description
Computes the estimate, standard error, and confidence interval for a linear contrast of paired-samples mean differences from two or more studies. A Satterthwaite adjustment to the degrees of freedom is used to improve the accuracy of the confidence interval. Equality of variances within or across studies is not assumed.
Usage
meta.lc.mean.ps(alpha, m1, m2, sd1, sd2, cor, n, v)
Arguments
alpha |
alpha level for 1-alpha confidence |
m1 |
vector of estimated means for measurement 1 |
m2 |
vector of estimated means for measurement 2 |
sd1 |
vector of estimated SDs for measurement 1 |
sd2 |
vector of estimated SDs for measurement 2 |
cor |
vector of estimated correlations for paired measurements |
n |
vector of sample sizes |
v |
vector of contrast coefficients |
Value
Returns 1-row matrix with the following columns:
Estimate - estimated linear contrast
SE - standard error
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
df - degrees of freedom
References
Bonett DG (2009). “Meta-analytic interval estimation for standardized and unstandardized mean differences.” Psychological Methods, 14(3), 225–238. ISSN 1939-1463, doi:10.1037/a0016619.
Examples
m1 <- c(53, 60, 53, 57)
m2 <- c(55, 62, 58, 61)
sd1 <- c(4.1, 4.2, 4.5, 4.0)
sd2 <- c(4.2, 4.7, 4.9, 4.8)
cor <- c(.7, .7, .8, .85)
n <- c(30, 50, 30, 70)
v <- c(.5, .5, -.5, -.5)
meta.lc.mean.ps(.05, m1, m2, sd1, sd2, cor, n, v)
# Should return:
# Estimate SE LL UL df
# Contrast 2.5 0.4943114 1.520618 3.479382 112.347