meta.ave.odds {vcmeta} | R Documentation |
Confidence interval for average odds ratio from 2-group studies
Description
Computes the estimate, standard error, and confidence interval for a geometric average odds ratio from two or more studies.
Usage
meta.ave.odds(alpha, f1, f2, n1, n2, bystudy = TRUE)
Arguments
alpha |
alpha level for 1-alpha confidence |
f1 |
vector of group 1 frequency counts |
f2 |
vector of group 2 frequency counts |
n1 |
vector of group 1 sample sizes |
n2 |
vector of group 2 sample sizes |
bystudy |
logical to also return each study estimate (TRUE) or not |
Value
Returns a matrix. The first row is the average estimate across all studies. If bystudy is TRUE, there is 1 additional row for each study. The matrix has the following columns:
Estimate - estimated effect size
SE - standard error
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
exp(Estimate) - the exponentiated estimate
exp(LL) - lower limit of the exponentiated confidence interval
exp(UL) - upper limit of the exponentiated confidence interval
References
Bonett DG, Price RM (2015). “Varying coefficient meta-analysis methods for odds ratios and risk ratios.” Psychological Methods, 20(3), 394–406. ISSN 1939-1463, doi:10.1037/met0000032.
Examples
n1 <- c(204, 201, 932, 130, 77)
n2 <- c(106, 103, 415, 132, 83)
f1 <- c(24, 40, 93, 14, 5)
f2 <- c(12, 9, 28, 3, 1)
meta.ave.odds(.05, f1, f2, n1, n2, bystudy = TRUE)
# Should return:
# Estimate SE LL UL
# Average 0.86211102 0.2512852 0.36960107 1.3546210
# Study 1 0.02581353 0.3700520 -0.69947512 0.7511022
# Study 2 0.91410487 0.3830515 0.16333766 1.6648721
# Study 3 0.41496672 0.2226089 -0.02133877 0.8512722
# Study 4 1.52717529 0.6090858 0.33338907 2.7209615
# Study 5 1.42849472 0.9350931 -0.40425414 3.2612436
# exp(Estimate) exp(LL) exp(UL)
# Average 2.368155 1.4471572 3.875292
# Study 1 1.026150 0.4968460 2.119335
# Study 2 2.494541 1.1774342 5.284997
# Study 3 1.514320 0.9788873 2.342625
# Study 4 4.605150 1.3956902 15.194925
# Study 5 4.172414 0.6674745 26.081952