meta.ave.cor {vcmeta} | R Documentation |
Confidence interval for an average Pearson or partial correlation
Description
Computes the estimate, standard error, and confidence interval for an average Pearson or partial correlation from two or more studies. The sample correlations must be all Pearson correlations or all partial correlations. Use the meta.ave.gen function to meta-analyze any combination of Pearson, partial, or Spearman correlations.
Usage
meta.ave.cor(alpha, n, cor, s, bystudy = TRUE)
Arguments
alpha |
alpha level for 1-alpha confidence |
n |
vector of sample sizes |
cor |
vector of estimated correlations |
s |
number of control variables (set to 0 for Pearson) |
bystudy |
logical to also return each study estimate (TRUE) or not |
Value
Returns a matrix. The first row is the average estimate across all studies. If bystudy is TRUE, there is 1 additional row for each study. The matrix has the following columns:
Estimate - estimated effect size
SE - standard error
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
References
Bonett DG (2008). “Meta-analytic interval estimation for bivariate correlations.” Psychological Methods, 13(3), 173–181. ISSN 1939-1463, doi:10.1037/a0012868.
Examples
n <- c(55, 190, 65, 35)
cor <- c(.40, .65, .60, .45)
meta.ave.cor(.05, n, cor, 0, bystudy = TRUE)
# Should return:
# Estimate SE LL UL
# Average 0.525 0.05113361 0.4176678 0.6178816
# Study 1 0.400 0.11430952 0.1506943 0.6014699
# Study 2 0.650 0.04200694 0.5594086 0.7252465
# Study 3 0.600 0.08000000 0.4171458 0.7361686
# Study 4 0.450 0.13677012 0.1373507 0.6811071