logLik.loglm {vcdExtra} | R Documentation |
Log-Likelihood of a loglm Object
Description
Calculates the log-likelihood value of the loglm
model represented by object
evaluated at the estimated coefficients.
It allows the use of AIC
and BIC
, which require
that a logLik
method exists to extract the corresponding log-likelihood for the
model.
Usage
## S3 method for class 'loglm'
logLik(object, ..., zero=1E-10)
Arguments
object |
A |
... |
For compatibility with the S3 generic; not used here |
zero |
value used to replace zero frequencies in calculating the log-likelihood |
Details
If cell frequencies have not been stored with the loglm
object
(via the argument keep.frequencies = TRUE
), they are obtained
using update
.
This function calculates the log-likelihood in a way that allows for non-integer
frequencies, such as the case where 0.5 has been added to all cell frequencies
to allow for sampling zeros. If the frequencies still contain zero values,
those are replaced by the value of start
.
For integer frequencies, it gives the same result as the corresponding
model fit using glm
, whereas glm
returns -Inf
if there are any non-integer frequencies.
Value
Returns an object of class logLik
.
This is a number with one attribute, "df"
(degrees of freedom),
giving the number of (estimated) parameters in the model.
Author(s)
Achim Zeileis
See Also
Examples
data(Titanic, package="datasets")
require(MASS)
titanic.mod1 <- loglm(~ (Class * Age * Sex) + Survived, data=Titanic)
titanic.mod2 <- loglm(~ (Class * Age * Sex) + Survived*(Class + Age + Sex), data=Titanic)
titanic.mod3 <- loglm(~ (Class * Age * Sex) + Survived*(Class + Age * Sex), data=Titanic)
logLik(titanic.mod1)
AIC(titanic.mod1, titanic.mod2, titanic.mod3)
BIC(titanic.mod1, titanic.mod2, titanic.mod3)
# compare with models fit using glm()
titanic <- as.data.frame(Titanic)
titanic.glm1 <- glm(Freq ~ (Class * Age * Sex) + Survived,
data=titanic, family=poisson)
titanic.glm2 <- glm(Freq ~ (Class * Age * Sex) + Survived*(Class + Age + Sex),
data=titanic, family=poisson)
titanic.glm3 <- glm(Freq ~ (Class * Age * Sex) + Survived*(Class + Age * Sex),
data=titanic, family=poisson)
logLik(titanic.glm1)
AIC(titanic.glm1, titanic.glm2, titanic.glm3)
BIC(titanic.glm1, titanic.glm2, titanic.glm3)