VASIQ {vasicekreg} | R Documentation |
The Vasicek distribution - quantile parameterization
Description
The function VASIQ()
define the Vasicek distribution for a gamlss.family
object to be used in GAMLSS fitting. VASIQ()
has the \tau
-th quantile equal to the parameter mu and sigma as shape parameter. The functions dVASIQ
, pVASIQ
, qVASIQ
and rVASIQ
define the density, distribution function, quantile function and random generation for Vasicek distribution.
Usage
dVASIQ(x, mu, sigma, tau = 0.5, log = FALSE)
pVASIQ(q, mu, sigma, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
qVASIQ(p, mu, sigma, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
rVASIQ(n, mu, sigma, tau = 0.5)
VASIQ(mu.link = "logit", sigma.link = "logit")
Arguments
x , q |
vector of quantiles on the (0,1) interval. |
mu |
vector of the |
sigma |
vector of shape parameter values. |
tau |
the |
log , log.p |
logical; If TRUE, probabilities p are given as log(p). |
lower.tail |
logical; If TRUE, (default), |
p |
vector of probabilities. |
n |
number of observations. If |
mu.link |
the mu link function with default logit. |
sigma.link |
the sigma link function with default logit. |
Details
Probability density function
f\left( {x\mid \mu ,\sigma ,\tau } \right) = \sqrt {{\textstyle{{1 - \sigma } \over \sigma }}} \exp \left\{ {\frac{1}{2}\left[ {\Phi ^{ - 1} \left( x \right)^2 - \left( {\frac{{\sqrt {1 - \sigma } \left[ {\Phi ^{ - 1} \left( x \right) - \Phi ^{ - 1} \left( \mu \right)} \right] - \sqrt \sigma \,\Phi ^{ - 1} \left( \tau \right)}}{{\sqrt \sigma }}} \right)^2 } \right]} \right\}
Cumulative distribution function
F\left({x\mid \mu ,\sigma ,\tau } \right) = \Phi \left[ {\frac{{\sqrt {1 - \sigma } \left[ {\Phi ^{ - 1} \left( x \right) - \Phi ^{ - 1} \left( \mu \right)} \right] - \sqrt \sigma \,\Phi ^{ - 1} \left( \tau \right)}}{{\sqrt \sigma }}} \right]
where 0<(x, \mu, \tau, \sigma)<1
, \mu
is the \tau
-th quantile and \sigma
is the shape parameter.
Value
VASIQ()
return a gamlss.family object which can be used to fit a Vasicek distribution by gamlss() function.
Note
Note that for VASIQ()
, mu is the \tau
-th quantile and sigma a shape parameter. The gamlss
function is used for parameters estimation.
Author(s)
Josmar Mazucheli jmazucheli@gmail.com
Bruna Alves pg402900@uem.br
References
Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman and Hall, London.
Mazucheli, J., Alves, B. and Korkmaz, M. C. (2021). The Vasicek quantile regression model. (under review).
Rigby, R. A. and Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape (with discussion). Applied. Statistics, 54(3), 507–554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z. and De Bastiani, F. (2019). Distributions for modeling location, scale, and shape: Using GAMLSS in R. Chapman and Hall/CRC.
Stasinopoulos, D. M. and Rigby, R. A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, 23(7), 1–45.
Stasinopoulos, D. M., Rigby, R. A., Heller, G., Voudouris, V. and De Bastiani F. (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Vasicek, O. A. (1987). Probability of loss on loan portfolio. KMV Corporation.
Vasicek, O. A. (2002). The distribution of loan portfolio value. Risk, 15(12), 1–10.
See Also
Examples
set.seed(123)
x <- rVASIQ(n = 1000, mu = 0.50, sigma = 0.69, tau = 0.50)
R <- range(x)
S <- seq(from = R[1], to = R[2], length.out = 1000)
hist(x, prob = TRUE, main = 'Vasicek')
lines(S, dVASIQ(x = S, mu = 0.50, sigma = 0.69, tau = 0.50), col = 2)
plot(ecdf(x))
lines(S, pVASIQ(q = S, mu = 0.50, sigma = 0.69, tau = 0.50), col = 2)
plot(quantile(x, probs = S), type = "l")
lines(qVASIQ(p = S, mu = 0.50, sigma = 0.69, tau = 0.50), col = 2)
library(gamlss)
set.seed(123)
data <- data.frame(y = rVASIQ(n = 100, mu = 0.50, sigma = 0.69, tau = 0.50))
tau <- 0.5
fit <- gamlss(y ~ 1, data = data, family = VASIQ(mu.link = 'logit', sigma.link = 'logit'))
1 /(1 + exp(-fit$mu.coefficients)); 1 /(1 + exp(-fit$sigma.coefficients))
set.seed(123)
n <- 100
x <- rbinom(n, size = 1, prob = 0.5)
eta <- 0.5 + 1 * x;
mu <- 1 / (1 + exp(-eta));
sigma <- 0.5;
y <- rVASIQ(n, mu, sigma, tau = 0.5)
data <- data.frame(y, x, tau = 0.5)
tau <- 0.5;
fit <- gamlss(y ~ x, data = data, family = VASIQ)
fittaus <- lapply(c(0.10, 0.25, 0.50, 0.75, 0.90), function(Tau)
{
tau <<- Tau;
gamlss(y ~ x, data = data, family = VASIQ)
})
sapply(fittaus, summary)