fevd {vars}R Documentation

Forecast Error Variance Decomposition

Description

Computes the forecast error variance decomposition of a VAR(p) for n.ahead steps.

Usage

## S3 method for class 'varest'
fevd(x, n.ahead=10, ...)
## S3 method for class 'svarest'
fevd(x, n.ahead=10, ...)
## S3 method for class 'svecest'
fevd(x, n.ahead=10, ...)
## S3 method for class 'vec2var'
fevd(x, n.ahead=10, ...)

Arguments

x

Object of class ‘varest’; generated by VAR(), or an object of class ‘svarest’; generated by SVAR(), or an object of class ‘vec2var’; generated by vec2var(), or an object of class ‘svecest’; generated by SVEC().

n.ahead

Integer specifying the steps.

...

Currently not used.

Details

The forecast error variance decomposition is based upon the orthogonalised impulse response coefficient matrices Ψh\Psi_h and allow the user to analyse the contribution of variable jj to the h-step forecast error variance of variable kk. If the orthogonalised impulse reponses are divided by the variance of the forecast error σk2(h)\sigma_k^2(h), the resultant is a percentage figure. Formally:

σk2(h)=n=0h1(ψk1,n2++ψkK,n2) \sigma_k^2(h) = \sum_{n=0}^{h-1}(\psi_{k1, n}^2 + \ldots + \psi_{kK, n}^2)

which can be written as:

σk2(h)=j=1K(ψkj,02++ψkj,h12). \sigma_k^2(h) = \sum_{j=1}^K(\psi_{kj, 0}^2 + \ldots + \psi_{kj, h-1}^2) \quad.

Dividing the term (ψkj,02++ψkj,h12)(\psi_{kj, 0}^2 + \ldots + \psi_{kj, h-1}^2) by σk2(h)\sigma_k^2(h) yields the forecast error variance decompositions in percentage terms.

Value

A list with class attribute ‘varfevd’ of length K holding the forecast error variances as matrices.

Author(s)

Bernhard Pfaff

References

Hamilton, J. (1994), Time Series Analysis, Princeton University Press, Princeton.

Lütkepohl, H. (2006), New Introduction to Multiple Time Series Analysis, Springer, New York.

See Also

VAR, SVAR, vec2var, SVEC, Phi, Psi, plot

Examples

data(Canada)
var.2c <- VAR(Canada, p = 2, type = "const")
fevd(var.2c, n.ahead = 5)

[Package vars version 1.6-1 Index]