fevd {vars} | R Documentation |
Forecast Error Variance Decomposition
Description
Computes the forecast error variance decomposition of a VAR(p) for
n.ahead
steps.
Usage
## S3 method for class 'varest'
fevd(x, n.ahead=10, ...)
## S3 method for class 'svarest'
fevd(x, n.ahead=10, ...)
## S3 method for class 'svecest'
fevd(x, n.ahead=10, ...)
## S3 method for class 'vec2var'
fevd(x, n.ahead=10, ...)
Arguments
x |
Object of class ‘ |
n.ahead |
Integer specifying the steps. |
... |
Currently not used. |
Details
The forecast error variance decomposition is based upon the
orthogonalised impulse response coefficient matrices \Psi_h
and
allow the user to analyse the contribution of variable j
to the
h-step forecast error variance of variable k
. If the
orthogonalised impulse reponses are divided by the variance of the
forecast error \sigma_k^2(h)
, the resultant is a percentage
figure. Formally:
\sigma_k^2(h) = \sum_{n=0}^{h-1}(\psi_{k1, n}^2 + \ldots + \psi_{kK, n}^2)
which can be written as:
\sigma_k^2(h) = \sum_{j=1}^K(\psi_{kj, 0}^2 + \ldots + \psi_{kj,
h-1}^2) \quad.
Dividing the term (\psi_{kj, 0}^2 + \ldots + \psi_{kj, h-1}^2)
by \sigma_k^2(h)
yields the forecast error variance
decompositions in percentage terms.
Value
A list with class attribute ‘varfevd
’ of length K
holding the forecast error variances as matrices.
Author(s)
Bernhard Pfaff
References
Hamilton, J. (1994), Time Series Analysis, Princeton University Press, Princeton.
Lütkepohl, H. (2006), New Introduction to Multiple Time Series Analysis, Springer, New York.
See Also
VAR
, SVAR
, vec2var
,
SVEC
, Phi
, Psi
,
plot
Examples
data(Canada)
var.2c <- VAR(Canada, p = 2, type = "const")
fevd(var.2c, n.ahead = 5)