covjmcm_hpc {varjmcm} | R Documentation |
Calculate the estimation of the covariance of estimated parameters in a HPC model, via the explicit formula.
Description
covjmcm_hpc
gives the estimation of the covariance of estimated parameters in a HPC model using
the explicit formula, which is the inverse of the estimated Fisher's information matrix.
Usage
covjmcm_hpc(object)
Arguments
object |
a fitted joint mean-covariance model of class "jmcmMod", returned by the function |
Value
an estimated covariance matrix of the estimated parameters in a HPC model.
References
[1] W. Zhang, C. Leng, and C. Y. Tang(2015), "A joint modelling approach for longitudinal studies," Journal of the Royal Statistical Society. Series B. 77, 219-238.
See Also
covjmcm
, covjmcm_mcd
, and covjmcm_acd
Examples
##This may take more than 1 min.
cattleA <- cattle[cattle$group=='A', ]
fit.hpc <- jmcm(weight|id|I(ceiling(day/14+1))~1|1,
data = cattleA, cov.method = "hpc",
triple = c(8,3,4))
cov.hpc <- covjmcm_hpc(fit.hpc)
[Package varjmcm version 0.1.1 Index]