hm_dcm_data_gen {variationalDCM} | R Documentation |
Artificial data generating function for the hidden-Markov DCM based on the given Q-matrix
Description
hm_dcm_data_gen()
returns the artificially generated item response data for the HM-DCM
Usage
hm_dcm_data_gen(
I = 500,
Q,
min_theta = 0.2,
max_theta = 0.8,
att_cor = 0.1,
seed = 17
)
Arguments
I |
the number of assumed respondents |
Q |
the |
min_theta |
the minimum value of the item parameter |
max_theta |
the maximum value of the item parameter |
att_cor |
the true value of the correlation among attributes (default: 0.1) |
seed |
the seed value used for random number generation (default: 17) |
Value
A list including:
- X
the generated artificial item response data
- alpha_true
the generated true vale of the attribute mastery pattern, matrix form
- alpha_patt_true
the generated true vale of the attribute mastery pattern, string form
References
Yamaguchi, K., & Martinez, A. J. (2024). Variational Bayes inference for hidden Markov diagnostic classification models. British Journal of Mathematical and Statistical Psychology, 77(1), 55–79. doi:10.1111/bmsp.12308
Examples
indT = 3
Q = sim_Q_J30K3
hm_sim_Q = lapply(1:indT,function(time_point) Q)
hm_sim_data = hm_dcm_data_gen(Q=hm_sim_Q,I=200)