variance_othstr {vardpoor} | R Documentation |
Variance estimation for sample surveys by the new stratification
Description
Computes s2g and the variance estimation by the new stratification.
Usage
variance_othstr(
Y,
H,
H2,
w_final,
N_h = NULL,
N_h2,
period = NULL,
dataset = NULL,
checking = TRUE
)
Arguments
Y |
Variables of interest. Object convertible to |
H |
The unit stratum variable. One dimensional object convertible to one-column |
H2 |
The unit new stratum variable. One dimensional object convertible to one-column |
w_final |
Weight variable. One dimensional object convertible to one-column |
N_h |
optional; either a |
N_h2 |
optional; either a |
period |
Optional variable for the survey periods. If supplied, the values for each period are computed independently. One dimensional object convertible to one-column |
dataset |
Optional survey data object convertible to |
checking |
Optional variable if this variable is TRUE, then function checks data preparation errors, otherwise not checked. This variable by default is TRUE. |
Details
It is possible to compute population size M_g
from sampling frame. The standard deviation of g
-th stratum is
S_g^2 =\frac{1}{M_g-1} \sum\limits_{k=1}^{M_g} \left(y_{gk}-\bar{Y}_g \right)^2= \frac{1}{M_g-1} \sum\limits_{k=1}^{M_g} y_{gk}^2 - \frac{M_g}{M_g-1}\bar{Y}_g^2
\sum\limits_{k=1}^{M_g} y_{gk} ^2
and \bar{Y}_g^2
have to be estimated to estimate S_g^2
. Estimate of \sum\limits_{k=1}^{M_g} y_{gk}^2
is \sum\limits_{h=1}^{H} \frac{N_h}{n_h} \sum\limits_{i=1}^{n_h} y_{gi}^2 z_{hi}
, where
z_{hi} = \left\{
\begin{array}{ll}
0, & h_i \notin \theta_g \\
1, & h_i \in \theta_g
\end{array}
\right.
, \theta_g
is the index group of successfully surveyed units belonging to g
-th stratum. #'Estimate of \bar{Y}_g^2
is
\hat{\bar{Y}}_g^2=\left( \hat{\bar{Y}}_g \right)^2-\hat{Var} \left(\hat{\bar{Y}} \right)
\hat{\bar{Y}}_g =\frac{\hat{Y}_g}{M_g}= \frac{1}{M_g} \sum\limits_{h=1}^{H} \frac{N_h}{n_h} \sum\limits_{i=1}^{n_h} y_{hi} z_{hi}
So the estimate of S_g^2
is
s_g^2=\frac{1}{M_g-1} \sum\limits_{h=1}^{H} \frac{N_h}{n_h} \sum\limits_{i=1}^{n_h} y_{hi}^2 z_{hi} -
-\frac{M_g}{M_g-1} \left( \left( \frac{1}{M_g} \sum\limits_{h=1}^{H} \frac{N_h}{n_h} \sum\limits_{i=1}^{n_h} y_{hi} z_{hi} \right)^2 - \frac{1}{M_g^2} \sum\limits_{h=1}^{H} N_h^2 \left(\frac{1}{n_h} - \frac{1}{N_h}\right) \frac{1}{n_h-1} \sum\limits_{i=1}^{n_h} \left(y_{hi} z_{hi} - \frac{1}{n_h} \sum\limits_{t=1}^{n_h} y_{ht} z_{ht} \right)^2 \right)
Two conditions have to realize to estimate S_g^2: n_h>1, \forall g
and \theta_g \ne 0, \forall g.
Variance of \hat{Y}
is
Var\left( \hat{Y} \right) = \sum\limits_{g=1}^{G} M_g^2 \left( \frac{1}{m_g} - \frac{1}{M_g} \right) S_g^2
Estimate of \hat{Var}\left( \hat{Y} \right)
is
\hat{Var}\left( \hat{Y} \right) = \sum\limits_{g=1}^{G} M_g^2 \left( \frac{1}{m_g} - \frac{1}{M_g} \right)s_g^2
Value
A list with objects are returned by the function:
betas A numeric
data.table
containing the estimated coefficients of calibration.s2g A
data.table
containing the s^2g value.var_est A
data.table
containing the values of the variance estimation.
References
M. Liberts. (2004) Non-response Analysis and Bias Estimation in a Survey on Transportation of Goods by Road.
See Also
domain
, lin.ratio
, linarpr
,
linarpt
, lingini
, lingini2
,
lingpg
, linpoormed
, linqsr
,
linrmpg
, residual_est
, vardom
,
vardom_othstr
, vardomh
, varpoord
Examples
library("data.table")
Y <- data.table(matrix(runif(50) * 5, ncol = 5))
H <- data.table(H = as.integer(trunc(5 * runif(10))))
H2 <- data.table(H2 = as.integer(trunc(3 * runif(10))))
N_h <- data.table(matrix(0 : 4, 5, 1))
setnames(N_h, names(N_h), "H")
N_h[, sk:= 10]
N_h2 <- data.table(matrix(0 : 2, 3, 1))
setnames(N_h2, names(N_h2), "H2")
N_h2[, sk2:= 4]
w_final <- rep(2, 10)
vo <- variance_othstr(Y = Y, H = H, H2 = H2,
w_final = w_final,
N_h = N_h, N_h2 = N_h2,
period = NULL,
dataset = NULL)
vo