variance_est {vardpoor} | R Documentation |
Variance estimation for sample surveys by the ultimate cluster method
Description
Computes the variance estimation by the ultimate cluster method.
Usage
variance_est(
Y,
H,
PSU,
w_final,
N_h = NULL,
fh_zero = FALSE,
PSU_level = TRUE,
PSU_sort = NULL,
period = NULL,
dataset = NULL,
msg = "",
checking = TRUE
)
Arguments
Y |
Variables of interest. Object convertible to |
H |
The unit stratum variable. One dimensional object convertible to one-column |
PSU |
Primary sampling unit variable. One dimensional object convertible to one-column |
w_final |
Weight variable. One dimensional object convertible to one-column |
N_h |
Number of primary sampling units in population for each stratum (and period if |
fh_zero |
by default FALSE; |
PSU_level |
by default TRUE; if PSU_level is TRUE, in each strata |
PSU_sort |
optional; if PSU_sort is defined, then variance is calculated for systematic sample. |
period |
Optional variable for the survey periods. If supplied, the values for each period are computed independently. Object convertible to |
dataset |
an optional name of the individual dataset |
msg |
an optional printed text, when function print error. |
checking |
Optional variable if this variable is TRUE, then function checks data preparation errors, otherwise not checked. This variable by default is TRUE. |
Details
If we assume that n_h \geq 2
for all h
, that is, two or more PSUs are selected from each stratum, then the variance of \hat{\theta}
can be estimated from the variation among the estimated PSU totals of the variable Z
:
\hat{V} \left(\hat{\theta} \right)=\sum\limits_{h=1}^{H} \left(1-f_h \right) \frac{n_h}{n_{h}-1} \sum\limits_{i=1}^{n_h} \left( z_{hi\bullet}-\bar{z}_{h\bullet\bullet}\right)^2,
where
\bullet
z_{hi\bullet}=\sum\limits_{j=1}^{m_{hi}} \omega_{hij} z_{hij}
\bullet
\bar{z}_{h\bullet\bullet}=\frac{\left( \sum\limits_{i=1}^{n_h} z_{hi\bullet} \right)}{n_h}
\bullet
f_h
is the sampling fraction of PSUs within stratum
\bullet
h
is the stratum number, with a total of H strata
\bullet
i
is the primary sampling unit (PSU) number within stratum h
, with a total of n_h
PSUs
\bullet
j
is the household number within cluster i
of stratum h
, with a total of m_{hi}
household
\bullet
w_{hij}
is the sampling weight for household j
in PSU i
of stratum h
\bullet
z_{hij}
denotes the observed value of the analysis variable z
for household j
in PSU i
of stratum h
Value
a data.table
containing the values of the variance estimation by totals.
References
Morris H. Hansen, William N. Hurwitz, William G. Madow, (1953), Sample survey methods and theory Volume I Methods and applications, 257-258, Wiley.
Guillaume Osier and Emilio Di Meglio. The linearisation approach implemented by Eurostat for the first wave of EU-SILC: what could be done from the second onwards? 2012
Eurostat Methodologies and Working papers, Standard error estimation for the EU-SILC indicators of poverty and social exclusion, 2013, URL http://ec.europa.eu/eurostat/documents/3859598/5927001/KS-RA-13-029-EN.PDF.
Yves G. Berger, Tim Goedeme, Guillame Osier (2013). Handbook on standard error estimation and other related sampling issues in EU-SILC, URL https://ec.europa.eu/eurostat/cros/content/handbook-standard-error-estimation-and-other-related-sampling-issues-ver-29072013_en
Eurostat Methodologies and Working papers, Handbook on precision requirements and variance estimation for ESS household surveys, 2013, URL http://ec.europa.eu/eurostat/documents/3859598/5927001/KS-RA-13-029-EN.PDF.
See Also
domain
, lin.ratio
, linarpr
,
linarpt
, lingini
, lingini2
,
lingpg
, linpoormed
, linqsr
,
linrmpg
, residual_est
, vardom
,
vardomh
, varpoord
, variance_othstr
Examples
Ys <- rchisq(10, 3)
w <- rep(2, 10)
PSU <- 1 : length(Ys)
H <- rep("Strata_1", 10)
# by default without using fh_zero (finite population correction)
variance_est(Y = Ys, H = H, PSU = PSU, w_final = w)
## Not run:
# without using fh_zero (finite population correction)
variance_est(Y = Ys, H = H, PSU = PSU, w_final = w, fh_zero = FALSE)
# with using fh_zero (finite population correction)
variance_est(Y = Ys, H = H, PSU = PSU, w_final = w, fh_zero = TRUE)
## End(Not run)