integration {varclust}R Documentation

Computes integration and acontamination of the clustering

Description

Integartion and acontamination are measures of the quality of a clustering with a reference to a true partition. Let X = (x_1, \ldots x_p) be the data set, A be a partition into clusters A_1, \ldots A_n (true partition) and B be a partition into clusters B_1, \ldots, B_m. Then for cluster A_j integration is eqaul to:

Int(A_j) = \frac{max_{k = 1, \ldots, m} \# \{ i \in \{ 1, \ldots p \}: x_i \in A_j \wedge x_i \in B_k \} }{\# A_j}

The B_k for which the value is maximized is called the integrating cluster of A_j. Then the integration for the whole clustering equals is Int(A,B) = \frac{1}{n} \sum_{j=1}^n Int(A_j) .The acontamination is defined by:

Acont(A_j) = \frac{ \# \{ i \in \{ 1, \ldots p \}: x_i \in A_j \wedge x_i \in B_k \} }{\# B_k}

where B_k is the integrating cluster for A_j. Then the acontamination for the whole dataset is Acont(A,B) = \frac{1}{n} \sum_{j=1}^n Acont(A_j)

Usage

integration(group, true_group)

Arguments

group

A vector, first partition.

true_group

A vector, second (reference) partition.

Value

An array containing values of integration and acontamination.

References

M. Sołtys. Metody analizy skupień. Master’s thesis, Wrocław University of Technology, 2010

Examples


sim.data <- data.simulation(n = 20, SNR = 1, K = 2, numb.vars = 50, max.dim = 2)
true_segmentation <- rep(1:2, each=50)
mlcc.fit <- mlcc.reps(sim.data$X, numb.clusters = 2, max.dim = 2, numb.cores=1)
integration(mlcc.fit$segmentation, true_segmentation)


[Package varclust version 0.9.4 Index]