varEst-package {varEst} | R Documentation |
Variance Estimation
Description
Error variance estimation in ultrahigh dimensional datasets with four different methods, viz. Refitted cross validation, k-fold refitted cross validation, Bootstrap-refitted cross validation, Ensemble method.
Details
The DESCRIPTION file:
Package: | varEst |
Type: | Package |
Title: | Variance Estimation |
Version: | 0.1.0 |
Author: | Sayanti Guha Majumdar, Anil Rai, Dwijesh Chandra Mishra |
Maintainer: | Sayanti Guha Majumdar <sayanti23gm@gmail.com> |
Description: | Error variance estimation in ultrahigh dimensional datasets with four different methods, viz. Refitted cross validation, k-fold refitted cross validation, Bootstrap-refitted cross validation, Ensemble method. |
License: | GPL-3 |
Encoding: | UTF-8 |
LazyData: | TRUE |
Imports: | SAM, caret, lm.beta, glmnet |
RoxygenNote: | 6.1.1 |
Index of help topics:
bsrcv Variance Estimation with Bootstrap-RCV ensemble Variance Estimation with Ensemble method krcv Variance Estimation with kfold-RCV rcv Variance Estimation with Refitted Cross Validation(RCV) varEst-package Variance Estimation
Author(s)
Sayanti Guha Majumdar, Anil Rai, Dwijesh Chandra Mishra
Maintainer: Sayanti Guha Majumdar <sayanti23gm@gmail.com>
References
Fan, J., Guo, S., Hao, N. (2012).Variance estimation using refitted cross-validation in ultrahigh dimensional regression. Journal of the Royal Statistical Society, 74(1), 37-65
Ravikumar, P., Lafferty, J., Liu, H. and Wasserman, L. (2009). Sparse additive models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(5), 1009-1030
Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of Royal Statistical Society, 58, 267-288