rpc {utiml} | R Documentation |
Ranking by Pairwise Comparison (RPC) for multi-label Classification
Description
Create a RPC model for multilabel classification.
Usage
rpc(
mdata,
base.algorithm = getOption("utiml.base.algorithm", "SVM"),
...,
cores = getOption("utiml.cores", 1),
seed = getOption("utiml.seed", NA)
)
Arguments
mdata |
A mldr dataset used to train the binary models. |
base.algorithm |
A string with the name of the base algorithm. (Default:
|
... |
Others arguments passed to the base algorithm for all subproblems |
cores |
The number of cores to parallelize the training. Values higher
than 1 require the parallel package. (Default:
|
seed |
An optional integer used to set the seed. This is useful when
the method is run in parallel. (Default: |
Details
RPC is a simple transformation method that uses pairwise classification to predict multi-label data. This is based on the one-versus-one approach to build a specific model for each label combination.
Value
An object of class RPCmodel
containing the set of fitted
models, including:
- labels
A vector with the label names.
- models
A list of the generated models, named by the label names.
References
Hullermeier, E., Furnkranz, J., Cheng, W., & Brinker, K. (2008). Label ranking by learning pairwise preferences. Artificial Intelligence, 172(16-17), 1897-1916.
See Also
Other Transformation methods:
brplus()
,
br()
,
cc()
,
clr()
,
dbr()
,
ebr()
,
ecc()
,
eps()
,
esl()
,
homer()
,
lift()
,
lp()
,
mbr()
,
ns()
,
ppt()
,
prudent()
,
ps()
,
rakel()
,
rdbr()
Other Pairwise methods:
clr()
Examples
model <- rpc(toyml, "RANDOM")
pred <- predict(model, toyml)