| rpc {utiml} | R Documentation | 
Ranking by Pairwise Comparison (RPC) for multi-label Classification
Description
Create a RPC model for multilabel classification.
Usage
rpc(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)
Arguments
| mdata | A mldr dataset used to train the binary models. | 
| base.algorithm | A string with the name of the base algorithm. (Default:
 | 
| ... | Others arguments passed to the base algorithm for all subproblems | 
| cores | The number of cores to parallelize the training. Values higher
than 1 require the parallel package. (Default:
 | 
| seed | An optional integer used to set the seed. This is useful when
the method is run in parallel. (Default:  | 
Details
RPC is a simple transformation method that uses pairwise classification to predict multi-label data. This is based on the one-versus-one approach to build a specific model for each label combination.
Value
An object of class RPCmodel containing the set of fitted
models, including:
- labels
- A vector with the label names. 
- models
- A list of the generated models, named by the label names. 
References
Hullermeier, E., Furnkranz, J., Cheng, W., & Brinker, K. (2008). Label ranking by learning pairwise preferences. Artificial Intelligence, 172(16-17), 1897-1916.
See Also
Other Transformation methods: 
brplus(),
br(),
cc(),
clr(),
dbr(),
ebr(),
ecc(),
eps(),
esl(),
homer(),
lift(),
lp(),
mbr(),
ns(),
ppt(),
prudent(),
ps(),
rakel(),
rdbr()
Other Pairwise methods: 
clr()
Examples
model <- rpc(toyml, "RANDOM")
pred <- predict(model, toyml)