rdbr {utiml} | R Documentation |
Recursive Dependent Binary Relevance (RDBR) for multi-label Classification
Description
Create a RDBR classifier to predict multi-label data. This is a recursive approach that enables the binary classifiers to discover existing label dependency by themselves. The idea of RDBR is running DBR recursively until the results stabilization of the result.
Usage
rdbr(
mdata,
base.algorithm = getOption("utiml.base.algorithm", "SVM"),
estimate.models = TRUE,
...,
cores = getOption("utiml.cores", 1),
seed = getOption("utiml.seed", NA)
)
Arguments
mdata |
A mldr dataset used to train the binary models. |
base.algorithm |
A string with the name of the base algorithm. (Default:
|
estimate.models |
Logical value indicating whether is necessary build
Binary Relevance classifier for estimate process. The default implementation
use BR as estimators, however when other classifier is desirable then use
the value |
... |
Others arguments passed to the base algorithm for all subproblems. |
cores |
The number of cores to parallelize the training. Values higher
than 1 require the parallel package. (Default:
|
seed |
An optional integer used to set the seed. This is useful when
the method is run in parallel. (Default: |
Details
The train method is exactly the same of DBR the recursion is in the predict method.
Value
An object of class RDBRmodel
containing the set of fitted
models, including:
- labels
A vector with the label names.
- estimation
The BR model to estimate the values for the labels. Only when the
estimate.models = TRUE
.- models
A list of final models named by the label names.
References
Rauber, T. W., Mello, L. H., Rocha, V. F., Luchi, D., & Varejao, F. M. (2014). Recursive Dependent Binary Relevance Model for Multi-label Classification. In Advances in Artificial Intelligence - IBERAMIA, 206-217.
See Also
Dependent Binary Relevance (DBR)
Other Transformation methods:
brplus()
,
br()
,
cc()
,
clr()
,
dbr()
,
ebr()
,
ecc()
,
eps()
,
esl()
,
homer()
,
lift()
,
lp()
,
mbr()
,
ns()
,
ppt()
,
prudent()
,
ps()
,
rakel()
,
rpc()
Examples
model <- rdbr(toyml, "RANDOM")
pred <- predict(model, toyml)
# Use Random Forest as base algorithm and 2 cores
model <- rdbr(toyml, 'RF', cores = 2, seed = 123)