prudent {utiml} | R Documentation |
PruDent classifier for multi-label Classification
Description
Create a PruDent classifier to predict multi-label data. To this, two round of Binary Relevance is executed, such that, the first iteration generates new attributes to enrich the second prediction.
Usage
prudent(
mdata,
base.algorithm = getOption("utiml.base.algorithm", "SVM"),
phi = 0,
...,
cores = getOption("utiml.cores", 1),
seed = getOption("utiml.seed", NA)
)
Arguments
mdata |
A mldr dataset used to train the binary models. |
base.algorithm |
A string with the name of the base algorithm. (Default:
|
phi |
A value between 0 and 1 to determine the information gain. The value 0 include all labels in the second phase and the 1 none. |
... |
Others arguments passed to the base algorithm for all subproblems. |
cores |
The number of cores to parallelize the training. Values higher
than 1 require the parallel package. (Default:
|
seed |
An optional integer used to set the seed. This is useful when
the method is run in parallel. (Default: |
Details
In the second phase only labels whose information gain is greater than a specific phi value is added.
Value
An object of class PruDentmodel
containing the set of fitted
models, including:
- labels
A vector with the label names.
- phi
The value of
phi
parameter.- IG
The matrix of Information Gain used in combination with
phi
parameter to define the labels used in the second step.- basemodel
The BRModel used in the first iteration.
- metamodels
A list of models named by the label names used in the second iteration.
References
Alali, A., & Kubat, M. (2015). PruDent: A Pruned and Confident Stacking Approach for Multi-Label Classification. IEEE Transactions on Knowledge and Data Engineering, 27(9), 2480-2493.
See Also
Other Transformation methods:
brplus()
,
br()
,
cc()
,
clr()
,
dbr()
,
ebr()
,
ecc()
,
eps()
,
esl()
,
homer()
,
lift()
,
lp()
,
mbr()
,
ns()
,
ppt()
,
ps()
,
rakel()
,
rdbr()
,
rpc()
Examples
model <- prudent(toyml, "RANDOM")
pred <- predict(model, toyml)
# Use different phi correlation with C5.0 classifier
model <- prudent(toyml, 'C5.0', 0.3)
# Set a specific parameter
model <- prudent(toyml, 'KNN', k=5)