predict.ECCmodel {utiml} | R Documentation |
Predict Method for Ensemble of Classifier Chains
Description
This method predicts values based upon a model trained by ecc
.
Usage
## S3 method for class 'ECCmodel'
predict(
object,
newdata,
vote.schema = "maj",
probability = getOption("utiml.use.probs", TRUE),
...,
cores = getOption("utiml.cores", 1),
seed = getOption("utiml.seed", NA)
)
Arguments
object |
Object of class ' |
newdata |
An object containing the new input data. This must be a matrix, data.frame or a mldr object. |
vote.schema |
Define the way that ensemble must compute the predictions.
The default valid options are: c("avg", "maj", "max", "min"). If |
probability |
Logical indicating whether class probabilities should be
returned. (Default: |
... |
Others arguments passed to the base algorithm prediction for all subproblems. |
cores |
The number of cores to parallelize the training. Values higher
than 1 require the parallel package. (Default:
|
seed |
An optional integer used to set the seed. This is useful when
the method is run in parallel. (Default: |
Value
An object of type mlresult, based on the parameter probability.
See Also
Ensemble of Classifier Chains (ECC)
Examples
# Predict SVM scores
model <- ecc(toyml)
pred <- predict(model, toyml)
# Predict SVM bipartitions running in 2 cores
pred <- predict(model, toyml, probability = FALSE, cores = 2)
# Return the classes with the highest score
pred <- predict(model, toyml, vote.schema = 'max')