ppt {utiml} | R Documentation |
Pruned Problem Transformation for multi-label Classification
Description
Create a Pruned Problem Transformation model for multilabel classification.
Usage
ppt(
mdata,
base.algorithm = getOption("utiml.base.algorithm", "SVM"),
p = 3,
info.loss = FALSE,
...,
cores = getOption("utiml.cores", 1),
seed = getOption("utiml.seed", NA)
)
Arguments
mdata |
A mldr dataset used to train the binary models. |
base.algorithm |
A string with the name of the base algorithm. (Default:
|
p |
Number of instances to prune. All labelsets that occurs p times or less in the training data is removed. (Default: 3) |
info.loss |
Logical value where |
... |
Others arguments passed to the base algorithm for all subproblems |
cores |
Not used |
seed |
An optional integer used to set the seed. (Default:
|
Details
Pruned Problem Transformation (PPT) is a multi-class transformation that remove the less common classes to predict multi-label data.
Value
An object of class PPTmodel
containing the set of fitted
models, including:
- labels
A vector with the label names.
- model
A LP model contained only the most common labelsets.
References
Read, J., Pfahringer, B., & Holmes, G. (2008). Multi-label classification using ensembles of pruned sets. In Proceedings - IEEE International Conference on Data Mining, ICDM (pp. 995–1000). Read, J. (2008). A pruned problem transformation method for multi-label classification. In Proceedings of the New Zealand Computer Science Research Student Conference (pp. 143-150).
See Also
Other Transformation methods:
brplus()
,
br()
,
cc()
,
clr()
,
dbr()
,
ebr()
,
ecc()
,
eps()
,
esl()
,
homer()
,
lift()
,
lp()
,
mbr()
,
ns()
,
prudent()
,
ps()
,
rakel()
,
rdbr()
,
rpc()
Other Powerset:
eps()
,
lp()
,
ps()
,
rakel()
Examples
model <- ppt(toyml, "RANDOM")
pred <- predict(model, toyml)
##Change default configurations
model <- ppt(toyml, "RF", p=4, info.loss=TRUE)