pcut_threshold {utiml} | R Documentation |
Proportional Thresholding (PCut)
Description
Define the proportion of examples for each label will be positive. The Proportion Cut (PCut) method can be a label-wise or global method that calibrates the threshold(s) from the training data globally or per label.
Usage
pcut_threshold(prediction, ratio, probability = FALSE)
## Default S3 method:
pcut_threshold(prediction, ratio, probability = FALSE)
## S3 method for class 'mlresult'
pcut_threshold(prediction, ratio, probability = FALSE)
Arguments
prediction |
A matrix or mlresult. |
ratio |
A single value between 0 and 1 or a list with ratio values contained one value per label. |
probability |
A logical value. If |
Value
A mlresult object.
Methods (by class)
-
default
: Proportional Thresholding (PCut) method for matrix -
mlresult
: Proportional Thresholding (PCut) for mlresult
References
Al-Otaibi, R., Flach, P., & Kull, M. (2014). Multi-label Classification: A Comparative Study on Threshold Selection Methods. In First International Workshop on Learning over Multiple Contexts (LMCE) at ECML-PKDD 2014.
Largeron, C., Moulin, C., & Gery, M. (2012). MCut: A Thresholding Strategy for Multi-label Classification. In 11th International Symposium, IDA 2012 (pp. 172-183).
See Also
Other threshold:
fixed_threshold()
,
lcard_threshold()
,
mcut_threshold()
,
rcut_threshold()
,
scut_threshold()
,
subset_correction()
Examples
prediction <- matrix(runif(16), ncol = 4)
pcut_threshold(prediction, .45)