multilabel_evaluate {utiml} | R Documentation |
Evaluate multi-label predictions
Description
This method is used to evaluate multi-label predictions. You can create a confusion matrix object or use directly the test dataset and the predictions. You can also specify which measures do you desire use.
Usage
multilabel_evaluate(object, ...)
## S3 method for class 'mldr'
multilabel_evaluate(object, mlresult, measures = c("all"), labels = FALSE, ...)
## S3 method for class 'mlconfmat'
multilabel_evaluate(object, measures = c("all"), labels = FALSE, ...)
Arguments
object |
A mldr dataset or a mlconfmat confusion matrix |
... |
Extra parameters to specific measures. |
mlresult |
The prediction result (Optional, required only when the mldr is used). |
measures |
The measures names to be computed. Call
|
labels |
Logical value defining if the label results should be also
returned. (Default: |
Value
If labels is FALSE return a vector with the expected multi-label measures, otherwise, a list contained the multi-label and label measures.
Methods (by class)
-
mldr
: Default S3 method -
mlconfmat
: Default S3 method
References
Madjarov, G., Kocev, D., Gjorgjevikj, D., & Dzeroski, S. (2012). An extensive experimental comparison of methods for multi-label learning. Pattern Recognition, 45(9), 3084-3104. Zhang, M.-L., & Zhou, Z.-H. (2014). A Review on Multi-Label Learning Algorithms. IEEE Transactions on Knowledge and Data Engineering, 26(8), 1819-1837. Gibaja, E., & Ventura, S. (2015). A Tutorial on Multilabel Learning. ACM Comput. Surv., 47(3), 52:1-2:38.
See Also
Other evaluation:
cv()
,
multilabel_confusion_matrix()
,
multilabel_measures()
Examples
prediction <- predict(br(toyml), toyml)
# Compute all measures
multilabel_evaluate(toyml, prediction)
multilabel_evaluate(toyml, prediction, labels=TRUE) # Return a list
# Compute bipartition measures
multilabel_evaluate(toyml, prediction, "bipartition")
# Compute multilples measures
multilabel_evaluate(toyml, prediction, c("accuracy", "F1", "macro-based"))
# Compute the confusion matrix before the measures
cm <- multilabel_confusion_matrix(toyml, prediction)
multilabel_evaluate(cm)
multilabel_evaluate(cm, "example-based")
multilabel_evaluate(cm, c("hamming-loss", "subset-accuracy", "F1"))