homer {utiml} | R Documentation |
Hierarchy Of Multilabel classifiER (HOMER)
Description
Create a Hierarchy Of Multilabel classifiER (HOMER).
Usage
homer(
mdata,
base.algorithm = getOption("utiml.base.algorithm", "SVM"),
clusters = 3,
method = c("balanced", "clustering", "random"),
iteration = 100,
...,
cores = getOption("utiml.cores", 1),
seed = getOption("utiml.seed", NA)
)
Arguments
mdata |
A mldr dataset used to train the binary models. |
base.algorithm |
A string with the name of the base algorithm. (Default:
|
clusters |
Number maximum of nodes in each level. (Default: 3) |
method |
The strategy used to organize the labels (create the meta-labels). The options are: "balanced", "clustering" and "random". (Default: "balanced"). |
iteration |
The number max of iterations, used by balanced or clustering methods. |
... |
Others arguments passed to the base algorithm for all subproblems. |
cores |
The number of cores to parallelize the training. Values higher
than 1 require the parallel package. (Default:
|
seed |
An optional integer used to set the seed. (Default:
|
Details
HOMER is an algorithm for effective and computationally efficient multilabel classification in domains with many labels. It constructs a hierarchy of multilabel classifiers, each one dealing with a much smaller set of labels.
Value
An object of class HOMERmodel
containing the set of fitted
models, including:
- labels
A vector with the label names.
- clusters
The number of nodes in each level
- models
The Hierarchy of BR models.
References
Tsoumakas, G., Katakis, I., & Vlahavas, I. (2008). Effective and efficient multilabel classification in domains with large number of labels. In Proc. ECML/PKDD 2008 Workshop on Mining Multidimensional Data (MMD'08) (pp. 30-44). Antwerp, Belgium.
See Also
Other Transformation methods:
brplus()
,
br()
,
cc()
,
clr()
,
dbr()
,
ebr()
,
ecc()
,
eps()
,
esl()
,
lift()
,
lp()
,
mbr()
,
ns()
,
ppt()
,
prudent()
,
ps()
,
rakel()
,
rdbr()
,
rpc()
Examples
model <- homer(toyml, "RANDOM")
pred <- predict(model, toyml)
##Change default configurations
model <- homer(toyml, "RF", clusters=5, method="clustering", iteration=10)