dbr {utiml} | R Documentation |
Dependent Binary Relevance (DBR) for multi-label Classification
Description
Create a DBR classifier to predict multi-label data. This is a simple approach
that enables the binary classifiers to discover existing label dependency by
themselves. The idea of DBR is exactly the same used in BR+ (the training
method is the same, excepted by the argument estimate.models
that
indicate if the estimated models must be created).
Usage
dbr(
mdata,
base.algorithm = getOption("utiml.base.algorithm", "SVM"),
estimate.models = TRUE,
...,
cores = getOption("utiml.cores", 1),
seed = getOption("utiml.seed", NA)
)
Arguments
mdata |
A mldr dataset used to train the binary models. |
base.algorithm |
A string with the name of the base algorithm. (Default:
|
estimate.models |
Logical value indicating whether is necessary build
Binary Relevance classifier for estimate process. The default implementation
use BR as estimators, however when other classifier is desirable then use
the value |
... |
Others arguments passed to the base algorithm for all subproblems. |
cores |
The number of cores to parallelize the training. Values higher
than 1 require the parallel package. (Default:
|
seed |
An optional integer used to set the seed. This is useful when
the method is run in parallel. (Default: |
Value
An object of class DBRmodel
containing the set of fitted
models, including:
- labels
A vector with the label names.
- estimation
The BR model to estimate the values for the labels. Only when the
estimate.models = TRUE
.- models
A list of final models named by the label names.
References
Montanes, E., Senge, R., Barranquero, J., Ramon Quevedo, J., Jose Del Coz, J., & Hullermeier, E. (2014). Dependent binary relevance models for multi-label classification. Pattern Recognition, 47(3), 1494-1508.
See Also
Recursive Dependent Binary Relevance
Other Transformation methods:
brplus()
,
br()
,
cc()
,
clr()
,
ebr()
,
ecc()
,
eps()
,
esl()
,
homer()
,
lift()
,
lp()
,
mbr()
,
ns()
,
ppt()
,
prudent()
,
ps()
,
rakel()
,
rdbr()
,
rpc()
Examples
model <- dbr(toyml, "RANDOM")
pred <- predict(model, toyml)
# Use Random Forest as base algorithm and 2 cores
model <- dbr(toyml, 'RF', cores = 2)