build_model.coxph {utile.tables} | R Documentation |
Build Cox PH models
Description
Models specified terms in model data against an existing model and returns a clean, human readable table of summarizing the effects and statistics for the newly generated model. This functions greatly simplifies fitting a large number of variables against a set of time-to-event data.
Usage
## S3 method for class 'coxph'
build_model(
.object,
...,
.mv = FALSE,
.test = c("LRT", "Wald"),
.col.test = FALSE,
.level = 0.95,
.stat.pct.sign = TRUE,
.digits = 1,
.p.digits = 4
)
Arguments
.object |
An object of class |
... |
One or more unquoted expressions separated by commas representing
columns in the model data.frame. May be specified using
|
.mv |
A logical. Fit all terms into a single multivariable model. If left FALSE, all terms are fit in their own univariate models. |
.test |
A character. The name of a |
.col.test |
A logical. Append a columns for the test and accompanying statistic used to derive the p-value. |
.level |
A double. The confidence level required. |
.stat.pct.sign |
A logical. Paste a percent symbol after all reported frequencies. |
.digits |
An integer. The number of digits to round numbers to. |
.p.digits |
An integer. The number of p-value digits to report. Note
that the p-value still rounded to the number of digits specified in
|
Value
An object of class data.frame summarizing the provided object. If the
tibble
package has been installed, a tibble will be returned.
See Also
Examples
library(survival)
library(dplyr)
data_lung <- lung |>
mutate_at(vars(inst, status, sex), as.factor) |>
mutate(status = case_when(status == 1 ~ 0, status == 2 ~ 1))
fit <- coxph(Surv(time, status) ~ 1, data = data_lung)
# Create a univariate model for each variable
fit |> build_model(sex, age)