optimal.scalability,USL-method {usl} | R Documentation |
Point of optimal scalability of a USL model
Description
Calculate the point of optimal scalability for a specific model.
Usage
## S4 method for signature 'USL'
optimal.scalability(object, alpha, beta, gamma)
Arguments
object |
A USL object. |
alpha |
Optional parameter to be used for evaluation instead of the parameter computed for the model. |
beta |
Optional parameter to be used for evaluation instead of the parameter computed for the model. |
gamma |
Optional parameter to be used for evaluation instead of the parameter computed for the model. |
Details
The point of optimal scalability is defined as:
Nopt = \frac{1}{\alpha}
Below this point the existing capacity is underutilized. Beyond that point the effects of diminishing returns become visible more and more.
The value can be constructed graphically by projecting the intersection of the linear scalability bound and the Amdahl asymptote onto the x-axis.
The parameters alpha
, beta
and gamma
are useful to do a
what-if analysis. Setting these parameters override the model parameters and
show how the system would behave with a different contention or coherency
delay parameter.
The point of optimal scalability is undefined if alpha
is zero.
This function accepts a arguments for beta
and gamma
although
the values are not required to perform the calculation. This is on purpose
to provide a coherent interface.
Value
A numeric value for the load where optimal scalability will be reached.
See Also
usl
,
peak.scalability,USL-method
limit.scalability,USL-method
Examples
require(usl)
data(specsdm91)
optimal.scalability(usl(throughput ~ load, specsdm91))
## Optimal scalability will be reached at about 36 virtual users