uskewFA {uskewFactors} | R Documentation |
Mixtures of 'Unrestricted' Skew-t Factor Analyzers via the EM algorithm
Description
Fits a mixture of 'unrestricted' skew-t factor analyzers via the EM algorithm for estimation of model parameters
Usage
uskewFA(x, G, q, init=1, max.it=100)
Arguments
x |
A numeric matrix. |
G |
The number of mixture components to fit. |
q |
The number of latent factors. |
init |
This number controls the starting values that are used: (1) k-means, or (2) random. |
max.it |
The maximum number of iterations of the EM algorithm. |
Value
map |
A vector of the maximum a posteriori group memberships. |
bic |
The value of the Bayesian Information Criterion. |
zhat |
The matrix of estimated probabilities of group membership. |
likelihood |
A vector containing the value of the complete-data log-likelihood computed at each iteration of the EM algorithm. |
Note
This package contains measurements on 200 Swiss banknotes: 100 genuine and 100 counterfeit. The variables are length of bill, width of left edge, width of right edge , bottom margin width and top margin width. All measurements are in millimetres. The data source is noted below.
Author(s)
Paula M. Murray, Ryan P. Browne, and Paul D. McNicholas
Maintainer: Paula M. Murray <paula.murray@math.mcmaster.ca>
References
Murray, P.M., Browne, R.P., and McNicholas, P.D. (2014), "Mixtures of 'Unrestricted' Skew-t Factor Analyzers". Arxiv preprint arXiv:1310.6224
See Also
Flury, B. and Riedwyl, H. (1988). Multivariate Statistics: A practical approach. London: Chapman and Hall.
Examples
data("banknote")
x=banknote[,c(5,6)]
# We let max.it=3 for a speedy illustration.
# More iterations are needed to ensure
# convergence.
results=uskewFA(x,G=2,q=1,max.it=3)
results