confint.univariateML {univariateML} | R Documentation |
Confidence Intervals for Maximum Likelihood Estimates
Description
Computes a confidence interval for one or more parameters in a
unvariateML
object.
Usage
## S3 method for class 'univariateML'
confint(object, parm = NULL, level = 0.95, Nreps = 1000, ...)
Arguments
object |
An object of class |
parm |
Vector of strings; the parameters to calculate a confidence
interval for. Each parameter must be a member of |
level |
The confidence level. |
Nreps |
Number of bootstrap iterations. Passed to
|
... |
Additional arguments passed to |
Details
confint.univariateML
is a wrapper for bootstrapml()
that
computes confidence intervals for the main parameters of object
.
The main parameters of object
are the members of
names(object)
. For instance, the main parameters of an object
obtained from mlnorm
are mean
and sd
. The
confidence intervals are parametric bootstrap percentile intervals
with limits (1-level)/2
and 1 - (1-level)
.
Value
A matrix or vector with columns giving lower and upper confidence
limits for each parameter in parm
.
See Also
stats::confint()
for the generic function and
bootstrapml()
for the function used to calculate the
confidence intervals.
Examples
object <- mlinvgauss(airquality$Wind)
confint(object) # 95% confidence interval for mean and shape
confint(object, "mean") # 95% confidence interval for the mean parameter
# confint(object, "variance") # Fails since 'variance isn't a main parameter.