| confint.univariateML {univariateML} | R Documentation | 
Confidence Intervals for Maximum Likelihood Estimates
Description
Computes a confidence interval for one or more parameters in a
unvariateML object.
Usage
## S3 method for class 'univariateML'
confint(object, parm = NULL, level = 0.95, Nreps = 1000, ...)
Arguments
object | 
 An object of class   | 
parm | 
 Vector of strings; the parameters to calculate a confidence
interval for. Each parameter must be a member of   | 
level | 
 The confidence level.  | 
Nreps | 
 Number of bootstrap iterations. Passed to
  | 
... | 
 Additional arguments passed to   | 
Details
confint.univariateML is a wrapper for  bootstrapml() that
computes confidence intervals for the main parameters of object.
The main parameters of object are the members of
names(object). For instance, the main parameters of an object
obtained from  mlnorm are  mean and  sd. The
confidence intervals are parametric bootstrap percentile intervals
with limits (1-level)/2 and 1 - (1-level).
Value
A matrix or vector with columns giving lower and upper confidence
limits for each parameter in parm.
See Also
stats::confint() for the generic function and
bootstrapml() for the function used to calculate the
confidence intervals.
Examples
object <- mlinvgauss(airquality$Wind)
confint(object) # 95% confidence interval for mean and shape
confint(object, "mean") # 95% confidence interval for the mean parameter
# confint(object, "variance") # Fails since 'variance isn't a main parameter.