uweibull {unitquantreg} | R Documentation |
The unit-Weibull distribution
Description
Density function, distribution function, quantile function and random number generation function
for the unit-Weibull distribution reparametrized in terms of the \tau
-th quantile, \tau \in (0, 1)
.
Usage
duweibull(x, mu, theta, tau = 0.5, log = FALSE)
puweibull(q, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
quweibull(p, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
ruweibull(n, mu, theta, tau = 0.5)
Arguments
x , q |
vector of positive quantiles. |
mu |
location parameter indicating the |
theta |
nonnegative shape parameter. |
tau |
the parameter to specify which quantile use in the parametrization. |
log , log.p |
logical; If TRUE, probabilities p are given as log(p). |
lower.tail |
logical; If TRUE, (default), |
p |
vector of probabilities. |
n |
number of observations. If |
Details
Probability density function
f(y\mid \alpha ,\theta )=\frac{\alpha \theta }{y}\left[ -\log (y)\right]^{\theta -1}\exp \left\{ -\alpha \left[ -\log (y)\right]^{\theta }\right\}
Cumulative distribution function
F(y\mid \alpha ,\theta )=\exp \left\{ -\alpha \left[ -\log (y)\right]^{\theta }\right\}
Quantile function
Q\left( \tau \mid \alpha ,\theta \right) =\exp \left\{ -\left[ -\frac{\log (\tau )}{\alpha }\right]^{\frac{1}{\theta }}\right\}
Reparameterization
\alpha =g^{-1}(\mu )=-\frac{\log (\tau )}{[-\log (\mu )]^{\theta}}
Value
duweibull
gives the density, puweibull
gives the distribution function,
quweibull
gives the quantile function and ruweibull
generates random deviates.
Invalid arguments will return an error message.
Author(s)
Josmar Mazucheli
André F. B. Menezes
References
Mazucheli, J., Menezes, A. F. B and Ghitany, M. E., (2018). The unit-Weibull distribution and associated inference. Journal of Applied Probability and Statistics, 13(2), 1–22.
Mazucheli, J., Menezes, A. F. B., Fernandes, L. B., Oliveira, R. P. and Ghitany, M. E., (2020). The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates. Journal of Applied Statistics, 47(6), 954–974.
Mazucheli, J., Menezes, A. F. B., Alqallaf, F. and Ghitany, M. E., (2021). Bias-Corrected Maximum Likelihood Estimators of the Parameters of the Unit-Weibull Distribution. Austrian Journal of Statistics, 50(3), 41–53.
Examples
set.seed(6969)
x <- ruweibull(n = 1000, mu = 0.5, theta = 1.5, tau = 0.5)
R <- range(x)
S <- seq(from = R[1], to = R[2], by = 0.01)
hist(x, prob = TRUE, main = 'unit-Weibull')
lines(S, duweibull(x = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)
plot(ecdf(x))
lines(S, puweibull(q = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)
plot(quantile(x, probs = S), type = "l")
lines(quweibull(p = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)