ugumbel {unitquantreg} | R Documentation |
The unit-Gumbel distribution
Description
Density function, distribution function, quantile function and random number generation function
for the unit-Gumbel distribution reparametrized in terms of the \tau
-th quantile, \tau \in (0, 1)
.
Usage
dugumbel(x, mu, theta, tau = 0.5, log = FALSE)
pugumbel(q, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
qugumbel(p, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
rugumbel(n, mu, theta, tau = 0.5)
Arguments
x , q |
vector of positive quantiles. |
mu |
location parameter indicating the |
theta |
nonnegative shape parameter. |
tau |
the parameter to specify which quantile use in the parametrization. |
log , log.p |
logical; If TRUE, probabilities p are given as log(p). |
lower.tail |
logical; If TRUE, (default), |
p |
vector of probabilities. |
n |
number of observations. If |
Details
Probability density function
f(y\mid \alpha ,\theta )=\frac{\theta }{y(1-y)}\exp \left\{ -\alpha -\theta \log \left( \frac{y}{1-y}\right) -\exp \left[ -\alpha -\theta \log \left( \frac{y}{1-y}\right) \right] \right\}
Cumulative distribution function
F(y\mid\alpha,\theta)={\exp }\left[ -{{\exp }}\left( -\alpha \right)\left( \frac{1-y}{y}\right) ^{\theta } \right]
Quantile function
Q(\tau \mid \alpha, \theta)= \frac{\left [-\frac{1}{\log(\tau) }\right ]^{\frac{1}{\theta}}}{\exp\left ( \frac{\alpha}{\theta} \right )+\left [-\frac{1}{\log(\tau) }\right ]^{\frac{1}{\theta}}}
Reparameterization
\alpha = g^{-1}(\mu ) =\theta \log \left( {\frac{1-\mu }{\mu }}\right) +\log \left( -\frac{1}{\log \left( \tau \right) }\right)
where 0<y<1
and \theta >0
is the shape parameter.
Value
dugumbel
gives the density, pugumbel
gives the distribution function,
qugumbel
gives the quantile function and rugumbel
generates random deviates.
Invalid arguments will return an error message.
Author(s)
Josmar Mazucheli
Andre F. B. Menezes
References
Mazucheli, J. and Alves, B., (2021). The unit-Gumbel Quantile Regression Model for Proportion Data. Under Review.
Gumbel, E. J., (1941). The return period of flood flows. The Annals of Mathematical Statistics, 12(2), 163–190.
Examples
set.seed(6969)
x <- rugumbel(n = 1000, mu = 0.5, theta = 1.5, tau = 0.5)
R <- range(x)
S <- seq(from = R[1], to = R[2], by = 0.01)
hist(x, prob = TRUE, main = 'unit-Gumbel')
lines(S, dugumbel(x = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)
plot(ecdf(x))
lines(S, pugumbel(q = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)
plot(quantile(x, probs = S), type = "l")
lines(qugumbel(p = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)