ugompertz {unitquantreg} | R Documentation |
The unit-Gompertz distribution
Description
Density function, distribution function, quantile function and random number deviates
for the unit-Gompertz distribution reparametrized in terms of the \tau
-th quantile, \tau \in (0, 1)
.
Usage
dugompertz(x, mu, theta, tau = 0.5, log = FALSE)
pugompertz(q, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
qugompertz(p, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
rugompertz(n, mu, theta, tau = 0.5)
Arguments
x , q |
vector of positive quantiles. |
mu |
location parameter indicating the |
theta |
nonnegative shape parameter. |
tau |
the parameter to specify which quantile is to be used. |
log , log.p |
logical; If TRUE, probabilities p are given as log(p). |
lower.tail |
logical; If TRUE, (default), |
p |
vector of probabilities. |
n |
number of observations. If |
Details
Probability density function
f(y\mid \alpha ,\theta )=\frac{\alpha \theta }{x}\exp \left\{ \alpha -\theta \log \left( y\right) -\alpha \exp \left[ -\theta \log \left( y\right) \right] \right\}
Cumulative density function
F(y\mid \alpha ,\theta )=\exp \left[ \alpha \left( 1-y^{\theta }\right) \right]
Quantile Function
Q(\tau \mid \alpha ,\theta )=\left[ \frac{\alpha -\log \left( \tau \right) }{\alpha }\right] ^{-\frac{1}{\theta }}
Reparameterization
\alpha =g^{-1}(\mu )=\frac{\log \left( \tau \right) }{1-\mu ^{\theta }}
Value
dugompertz
gives the density, pugompertz
gives the distribution function,
qugompertz
gives the quantile function and rugompertz
generates random deviates.
Invalid arguments will return an error message.
Author(s)
Josmar Mazucheli jmazucheli@gmail.com
André F. B. Menezes andrefelipemaringa@gmail.com
References
Mazucheli, J., Menezes, A. F. and Dey, S., (2019). Unit-Gompertz Distribution with Applications. Statistica, 79(1), 25-43.
Examples
set.seed(123)
x <- rugompertz(n = 1000, mu = 0.5, theta = 2, tau = 0.5)
R <- range(x)
S <- seq(from = R[1], to = R[2], by = 0.01)
hist(x, prob = TRUE, main = 'unit-Gompertz')
lines(S, dugompertz(x = S, mu = 0.5, theta = 2, tau = 0.5), col = 2)
plot(ecdf(x))
lines(S, pugompertz(q = S, mu = 0.5, theta = 2, tau = 0.5), col = 2)
plot(quantile(x, probs = S), type = "l")
lines(qugompertz(p = S, mu = 0.5, theta = 2, tau = 0.5), col = 2)