ughnx {unitquantreg} | R Documentation |
The unit-Half-Normal-X distribution
Description
Density function, distribution function, quantile function and random number generation function
for the unit-Half-Normal-X distribution reparametrized in terms of the \tau
-th quantile, \tau \in (0, 1)
.
Usage
dughnx(x, mu, theta, tau = 0.5, log = FALSE)
pughnx(q, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
qughnx(p, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
rughnx(n, mu, theta, tau = 0.5)
Arguments
x , q |
vector of positive quantiles. |
mu |
location parameter indicating the |
theta |
nonnegative shape parameter. |
tau |
the parameter to specify which quantile is to be used. |
log , log.p |
logical; If TRUE, probabilities p are given as log(p). |
lower.tail |
logical; If TRUE, (default), |
p |
vector of probabilities. |
n |
number of observations. If |
Details
Probability density function
f(y\mid \alpha ,\theta )=\sqrt{\frac{2}{\pi }}\frac{\theta }{y\left(1-y\right) }\left( {\frac{y}{\alpha \left( 1-y\right) }}\right) ^{\theta }\mathrm{\exp }\left\{ -\frac{1}{2}\left[ {\frac{y}{\alpha \left( 1-y\right) }}\right] ^{2\theta }\right\}
Cumulative density function
F(y\mid \alpha ,\theta )=2\Phi \left[ \left( \frac{y}{\alpha \left(1-y\right) }\right) ^{\theta }\right] -1
Quantile Function
Q(\tau \mid \alpha )=\frac{\alpha \left[ \Phi ^{-1}\left( \frac{\tau +1}{2}\right) \right] ^{\frac{1}{\theta }}}{1+\alpha \left[ \Phi ^{-1}\left( \frac{ \tau +1}{2}\right) \right] ^{\frac{1}{\theta }}}
Reparametrization
\alpha=g^{-1}(\mu )=\frac{\mu }{\left( 1-\mu \right) \left[ \Phi ^{-1}\left( \frac{\tau +1}{2}\right) \right] ^{\frac{1}{\theta }}}
Value
dughnx
gives the density, pughnx
gives the distribution function,
qughnx
gives the quantile function and rughnx
generates random deviates.
Invalid arguments will return an error message.
Author(s)
Josmar Mazucheli jmazucheli@gmail.com
André F. B. Menezes andrefelipemaringa@gmail.com
References
Bakouch, H. S., Nik, A. S., Asgharzadeh, A. and Salinas, H. S., (2021). A flexible probability model for proportion data: Unit-Half-Normal distribution. Communications in Statistics: CaseStudies, Data Analysis and Applications, 0(0), 1–18.
Examples
set.seed(123)
x <- rughnx(n = 1000, mu = 0.5, theta = 2, tau = 0.5)
R <- range(x)
S <- seq(from = R[1], to = R[2], by = 0.01)
hist(x, prob = TRUE, main = 'unit-Half-Normal-X')
lines(S, dughnx(x = S, mu = 0.5, theta = 2, tau = 0.5), col = 2)
plot(ecdf(x))
lines(S, pughnx(q = S, mu = 0.5, theta = 2, tau = 0.5), col = 2)
plot(quantile(x, probs = S), type = "l")
lines(qughnx(p = S, mu = 0.5, theta = 2, tau = 0.5), col = 2)