ughne {unitquantreg} | R Documentation |
The unit-Half-Normal-E distribution
Description
Density function, distribution function, quantile function and random number generation function
for the unit-Half-Normal-E distribution reparametrized in terms of the \tau
-th quantile, \tau \in (0, 1)
.
Usage
dughne(x, mu, theta, tau = 0.5, log = FALSE)
pughne(q, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
qughne(p, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
rughne(n, mu, theta, tau = 0.5)
Arguments
x , q |
vector of positive quantiles. |
mu |
location parameter indicating the |
theta |
nonnegative shape parameter. |
tau |
the parameter to specify which quantile is to be used. |
log , log.p |
logical; If TRUE, probabilities p are given as log(p). |
lower.tail |
logical; If TRUE, (default), |
p |
vector of probabilities. |
n |
number of observations. If |
Details
Probability density function
f(y\mid \alpha ,\theta )=\sqrt{\frac{2}{\pi }}\frac{\theta }{y\left[ -\log\left( y\right) \right] }\left( -{\frac{\log \left( y\right) }{\alpha }} \right)^{\theta }\mathrm{\exp }\left\{ -\frac{1}{2}\left[ -{\frac{\log \left( y\right) }{\alpha }}\right]^{2\theta }\right\}
Cumulative distribution function
F(y\mid \alpha ,\theta )=2\Phi \left[ -\left( -{\frac{\log \left( y\right) }{\alpha }}\right)^{\theta }\right]
Quantile function
Q(\tau \mid \alpha ,\theta )=\exp \left\{ -\alpha \left[ -\Phi^{-1}\left(\frac{\tau }{2}\right) \right]^{\frac{1}{\theta }}\right\}
Reparameterization
\alpha=g^{-1}(\mu )=-\log \left( \mu \right) \left[ -\Phi^{-1}\left( \frac{\tau }{2}\right) \right]^{-\frac{1}{\theta }}
Value
dughne
gives the density, pughne
gives the distribution function,
qughne
gives the quantile function and rughne
generates random deviates.
Invalid arguments will return an error message.
Author(s)
Josmar Mazucheli jmazucheli@gmail.com
André F. B. Menezes andrefelipemaringa@gmail.com
References
Korkmaz, M. C., (2020). The unit generalized half normal distribution: A new bounded distribution with inference and application. University Politehnica of Bucharest Scientific, 82(2), 133–140.
Examples
set.seed(123)
x <- rughne(n = 1000, mu = 0.5, theta = 2, tau = 0.5)
R <- range(x)
S <- seq(from = R[1], to = R[2], by = 0.01)
hist(x, prob = TRUE, main = 'unit-Half-Normal-E')
lines(S, dughne(x = S, mu = 0.5, theta = 2, tau = 0.5), col = 2)
plot(ecdf(x))
lines(S, pughne(q = S, mu = 0.5, theta = 2, tau = 0.5), col = 2)
plot(quantile(x, probs = S), type = "l")
lines(qughne(p = S, mu = 0.5, theta = 2, tau = 0.5), col = 2)