uchen {unitquantreg} | R Documentation |
The unit-Chen distribution
Description
Density function, distribution function, quantile function and random number generation function
for the unit-Chen distribution reparametrized in terms of the \tau
-th quantile, \tau \in (0, 1)
.
Usage
duchen(x, mu, theta, tau = 0.5, log = FALSE)
puchen(q, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
quchen(p, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
ruchen(n, mu, theta, tau = 0.5)
Arguments
x , q |
vector of positive quantiles. |
mu |
location parameter indicating the |
theta |
nonnegative shape parameter. |
tau |
the parameter to specify which quantile is to be used. |
log , log.p |
logical; If TRUE, probabilities p are given as log(p). |
lower.tail |
logical; If TRUE, (default), |
p |
vector of probabilities. |
n |
number of observations. If |
Details
Probability density function
f(y\mid \alpha ,\theta )=\frac{\alpha \theta }{y}\left[ -\log (y)\right]^{\theta -1}\exp \left\{ \left[ -\log \left( y\right) \right]^{\theta}\right\} \exp \left\{ \alpha \left\{ 1-\exp \left[ \left( -\log (y)\right)^{\theta }\right] \right\} \right\}
Cumulative distribution function
F(y\mid \alpha ,\theta )=\exp \left\{ \alpha \left\{ 1-\exp \left[ \left(-\log (y)\right)^{\theta }\right] \right\} \right\}
Quantile function
Q\left( \tau \mid \alpha ,\theta \right) =\exp \left\{ -\left[ \log \left( 1-{\frac{\log \left( \tau \right) }{\alpha }}\right) \right]^{\frac{1}{\theta}}\right\}
Reparameterization
\alpha=g^{-1}(\mu )={\frac{\log \left( \tau \right) }{1-\exp \left[ \left( -\log (\mu )\right)^{\theta }\right]}}
Value
duchen
gives the density, puchen
gives the distribution function,
quchen
gives the quantile function and ruchen
generates random deviates.
Invalid arguments will return an error message.
Author(s)
Josmar Mazucheli jmazucheli@gmail.com
André F. B. Menezes andrefelipemaringa@gmail.com
References
Korkmaz, M. C., Emrah, A., Chesneau, C. and Yousof, H. M., (2020). On the unit-Chen distribution with associated quantile regression and applications. Journal of Applied Statistics, 44(1) 1–22.
Examples
set.seed(123)
x <- ruchen(n = 1000, mu = 0.5, theta = 1.5, tau = 0.5)
R <- range(x)
S <- seq(from = R[1], to = R[2], by = 0.01)
hist(x, prob = TRUE, main = 'unit-Chen')
lines(S, duchen(x = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)
plot(ecdf(x))
lines(S, puchen(q = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)
plot(quantile(x, probs = S), type = "l")
lines(quchen(p = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)