uburrxii {unitquantreg} | R Documentation |
The unit-Burr-XII distribution
Description
Density function, distribution function, quantile function and random number generation function
for the unit-Burr-XII distribution reparametrized in terms of the \tau
-th quantile, \tau \in (0, 1)
.
Usage
duburrxii(x, mu, theta, tau = 0.5, log = FALSE)
puburrxii(q, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
quburrxii(p, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
ruburrxii(n, mu, theta, tau = 0.5)
Arguments
x , q |
vector of positive quantiles. |
mu |
location parameter indicating the |
theta |
nonnegative shape parameter. |
tau |
the parameter to specify which quantile is to used. |
log , log.p |
logical; If TRUE, probabilities p are given as log(p). |
lower.tail |
logical; If TRUE, (default), |
p |
vector of probabilities. |
n |
number of observations. If |
Details
Probability density function
f(y\mid \alpha, \theta )=\frac{\alpha \theta }{y}\left[ -\log (y)\right]^{\theta -1}\left\{ 1+\left[ -\log (y)\right] ^{\theta }\right\} ^{-\alpha -1}
Cumulative distribution function
F(y\mid \alpha, \theta )=\left\{ 1+\left[ -\log (y)\right] ^{\theta}\right\} ^{-\alpha }
Quantile function
Q(\tau \mid \alpha, \theta )=\exp \left[ -\left( \tau ^{-\frac{1}{\alpha }}-1\right)^{\frac{1}{\theta }} \right]
Reparameterization
\alpha=g^{-1}(\mu)=\frac{\log\left ( \tau^{-1} \right )}{\log\left [ 1+\log\left ( \frac{1}{\mu} \right )^\theta \right ]}
Value
duburrxii
gives the density, puburrxii
gives the distribution function,
quburrxii
gives the quantile function and ruburrxii
generates random deviates.
Invalid arguments will return an error message.
Author(s)
Josmar Mazucheli jmazucheli@gmail.com
André F. B. Menezes andrefelipemaringa@gmail.com
References
Korkmaz M. C. and Chesneau, C., (2021). On the unit Burr-XII distribution with the quantile regression modeling and applications. Computational and Applied Mathematics, 40(29), 1–26.
Examples
set.seed(123)
x <- ruburrxii(n = 1000, mu = 0.5, theta = 1.5, tau = 0.5)
R <- range(x)
S <- seq(from = R[1], to = R[2], by = 0.01)
hist(x, prob = TRUE, main = 'unit-Burr-XII')
lines(S, duburrxii(x = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)
plot(ecdf(x))
lines(S, puburrxii(q = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)
plot(quantile(x, probs = S), type = "l")
lines(quburrxii(p = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)