leeg {unitquantreg} | R Documentation |
The Log-extended exponential-geometric distribution
Description
Density function, distribution function, quantile function and random number generation function
for the Log-extended exponential-geometric distribution reparametrized in terms of the \tau
-th quantile, \tau \in (0, 1)
.
Usage
dleeg(x, mu, theta, tau = 0.5, log = FALSE)
pleeg(q, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
qleeg(p, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
rleeg(n, mu, theta, tau = 0.5)
Arguments
x , q |
vector of positive quantiles. |
mu |
location parameter indicating the |
theta |
nonnegative shape parameter. |
tau |
the parameter to specify which quantile is to be used. |
log , log.p |
logical; If TRUE, probabilities p are given as log(p). |
lower.tail |
logical; If TRUE, (default), |
p |
vector of probabilities. |
n |
number of observations. If |
Details
Probability density function
f(y\mid \alpha ,\theta )=\frac{\theta \left( 1+\alpha \right) y^{\theta -1}}{\left( 1+\alpha y^{\theta }\right) ^{2}}
Cumulative distribution function
F(y\mid \alpha ,\theta )=\frac{\left( 1+\alpha \right) y^{\theta }}{1+\alpha y^{\theta }}
Quantile function
Q(\tau \mid \alpha ,\theta )=\left[ \frac{\tau }{1+\alpha \left( 1-\tau\right) }\right] ^{\frac{1}{\theta }}
Reparameterization
\alpha=g^{-1}(\mu )=-\frac{1-\tau \mu ^{\theta }}{\left( 1-\tau \right) }
Value
dleeg
gives the density, pleeg
gives the distribution function,
qleeg
gives the quantile function and rleeg
generates random deviates.
Invalid arguments will return an error message.
Author(s)
Josmar Mazucheli jmazucheli@gmail.com
André F. B. Menezes andrefelipemaringa@gmail.com
References
Jodrá, P. and Jiménez-Gamero, M. D., (2020). A quantile regression model for bounded responses based on the exponential-geometric distribution. Revstat - Statistical Journal, 18(4), 415–436.
Examples
set.seed(123)
x <- rleeg(n = 1000, mu = 0.5, theta = 1.5, tau = 0.5)
R <- range(x)
S <- seq(from = R[1], to = R[2], by = 0.01)
hist(x, prob = TRUE, main = 'Log-extended exponential-geometric')
lines(S, dleeg(x = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)
plot(ecdf(x))
lines(S, pleeg(q = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)
plot(quantile(x, probs = S), type = "l")
lines(qleeg(p = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)