kum {unitquantreg} | R Documentation |
The Kumaraswamy distribution
Description
Density function, distribution function, quantile function and random number generation for the Kumaraswamy distribution reparametrized in terms of the \tau
-th quantile, \tau \in (0, 1)
.
Usage
dkum(x, mu, theta, tau = 0.5, log = FALSE)
pkum(q, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
qkum(p, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)
rkum(n, mu, theta, tau = 0.5)
Arguments
x , q |
vector of positive quantiles. |
mu |
location parameter indicating the |
theta |
nonnegative shape parameter. |
tau |
the parameter to specify which quantile is to used. |
log , log.p |
logical; If TRUE, probabilities p are given as log(p). |
lower.tail |
logical; If TRUE, (default), |
p |
vector of probabilities. |
n |
number of observations. If |
Details
Probability density function
f(y\mid \alpha ,\theta )=\alpha \theta y^{\theta -1}(1-y^{\theta })^{\alpha-1}
Cumulative distribution function
F(y\mid \alpha ,\theta )=1-\left( 1-y^{\theta }\right) ^{\alpha }
Quantile function
Q(\tau \mid \alpha ,\theta )=\left[ 1-\left( 1-\tau \right) ^{\frac{1}{\alpha }}\right] ^{\frac{1}{\theta }}
Reparameterization
\alpha=g^{-1}(\mu )=\frac{\log (1-\tau )}{\log (1-\mu ^{\theta })}
Value
dkum
gives the density, pkum
gives the distribution function,
qkum
gives the quantile function and rkum
generates random deviates.
Invalid arguments will return an error message.
Author(s)
Josmar Mazucheli
André F. B. Menezes
References
Kumaraswamy, P., (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1), 79–88.
Jones, M. C., (2009). Kumaraswamy's distribution: A beta-type distribution with some tractability advantages. Statistical Methodology, 6(1), 70-81.
Examples
set.seed(123)
x <- rkum(n = 1000, mu = 0.5, theta = 1.5, tau = 0.5)
R <- range(x)
S <- seq(from = R[1], to = R[2], by = 0.01)
hist(x, prob = TRUE, main = 'Kumaraswamy')
lines(S, dkum(x = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)
plot(ecdf(x))
lines(S, pkum(q = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)
plot(quantile(x, probs = S), type = "l")
lines(qkum(p = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)