| uniah {uniah} | R Documentation | 
Fit Unimodal Additive Hazards Model
Description
Nonparametric estimation of a unimodal or U-shape covariate effect for additive hazard model.
Usage
uniah(formula, trt, data, shape, mode, M, maxdec, maxiter, eps)
Arguments
| formula | a formula object: a response ~ a univariate covariate. The response must be survival outcome unsing the Surv function. | 
| trt | Treatment group. It must be coded by 0 or 1. This argument is optional. | 
| data | data.frame or list that includes variables named in the formula argument. | 
| shape | direction of the covariate effect on the hazard function, "unimodal" or "ushape" | 
| mode | mode of the unimodal or ushape hazard function, "known" or "unknown" (default is "unknown"). | 
| M | A value for mode, which is only requred when mode="known". | 
| maxdec | maximum number of decisimal for output (default is 3). | 
| maxiter | maximum number of iteration (default is 10^3). | 
| eps | stopping convergence criteria (default is 10^-3). | 
Details
The uniah function allows to analyze shape restricted additive hazards model, defined as
 \lambda(t|z,trt)=\lambda0(t)+\psi(z)+\beta trt, 
where  \lambda0  is a baseline hazard function,  \psi  is a unimodal or U-shaped function, z is a univariate variable, \beta is a regression parameter, and trt is a binary treatment group variable. One point at mode has to be fixed with  \psi(M)=0  for model identifiability. For known mode (mode="known"), M has to be prespecified, and ( \psi, \beta) is estimated given the prespecified M. For unknown mode (mode="unknown"), M is not needed, and  ( \psi , \beta, M) is estimated by profiling all hypothetical modes. A direction of  \psi  is defined as unimodal or ushape prior to data analysis. Monotone covariate effects are also considered by setting a mode to the left or right end point of Z.
Value
A list of class isoph:
| est | results. | 
| psi | estimated  | 
| beta | estimated  | 
| conv | algorithm convergence status. | 
| M | Predetermined model if mode="known" or estimated mode if mode="unknown". | 
| shape | Direction of  | 
| call | Specified arguments that are specified in the model. | 
Author(s)
Yunro Chung [aut, cre]
References
Yunro Chung, Anastasia Ivanova, Jason P. Fine, Shape restricted addtive hazards model (in preparation).
Examples
###
# 1. unimodal with known mode
###
# 1.1. create a test data set
test1=list(
  time=  c(9, 7, 5, 9, 5, 3, 8, 7, 9, 7),
  status=c(1, 1, 0, 1, 0, 1, 1, 1, 1, 1),
  z=     c(2, 8, 1, 3, 2, 4, 4, 6, 8, 3)
)
# 1.2. Fit isotonic proportional hazards model
res1=uniah(Surv(time,status)~z, data=test1, shape='unimodal', mode='known', M=5)
# 1.3. print result
res1
# 1.4 figure
plot(res1)
###
# 2. unimodal with known mode with treatment group
###
# 2.1. create a test data set 1
test2=list(
  time=  c(2, 7, 3, 7, 8, 1, 2, 2, 9, 8),
  status=c(1, 0, 1, 1, 1, 0, 0, 1, 1, 0),
  z=     c(4, 9, 5, 5, 1, 3, 8, 8, 1, 2),
  trt=   c(1, 1, 1, 1, 1, 0, 0, 0, 0, 0)
)
# 2.2. Fit isotonic proportional hazards model
res2=uniah(Surv(time,status)~z, trt=trt, data=test2, shape='unimodal', mode='known', M=6)
# 2.3. print result
res2
# 2.4 figure
plot(res2)
###
# 3. ushape with unknown mode
###
# 3.1. create a test data set
test3=list(
  time=  c(3, 4, 5, 4, 1, 8, 1, 9, 2, 8, 2, 5, 7, 2, 2, 3, 3, 1, 1, 8),
  status=c(1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1),
  z=     c(10,4, 6, 9, 2, 9, 9, 7, 6, 1, 2, 2, 7, 4, 8, 5, 7,10, 4, 8)
)
# 3.2. Fit isotonic proportional hazards model
res3=uniah(Surv(time,status)~z, data=test3, shape='ushape', mode='unknown')
# 3.3 print result
res3
# 3.4 Figure
plot(res3)
###
# 4. More arguments for plot.uniah
###
# 4.1 renames labels
#plot(res3, main="Ush", ylab="RD", xlab="Cov", lglab="Cov wt obs", lgloc="center", lgcex=1.5)
# 4.2 removes labels and changes line and point parameters
#plot(res3, main=NA, ylab=NA, xlab=NA, lglab=NA, lty=2, lcol=2, lwd=2, pch=3, pcol=4, pcex=1.5)