xmuTwinUpgradeMeansToCovariateModel {umx} | R Documentation |
Not for end-users: Add a means model with covariates to a twin model
Description
Does the following to model
(i.e., a umx top/MZ/DZ supermodel):
Change
top.expMeans
totop.intercept
.Create
top.meansBetas
for beta weights in rows (of covariates) and columns for each variable.Add matrices for each twin's data.cov vars (matrixes are called
T1DefVars
).Switch
mxExpectationNormal
in each data group to point to the localexpMean
.Add "expMean" algebra to each data group.
-
grp.expMean
sumstop.intercept
andgrp.DefVars %*% top.meansBetas
for each twin.
Usage
xmuTwinUpgradeMeansToCovariateModel(model, fullVars, fullCovs, nSib, sep)
Arguments
model |
The |
fullVars |
the FULL names of manifest variables |
fullCovs |
the FULL names of definition variables |
nSib |
How many siblings |
sep |
How twin variable names have been expanded, e.g. "_T". |
Details
In umx models with no covariates, means live in top$expMean
Value
model, now with means model extended to covariates.
See Also
called by
xmuTwinSuper_Continuous()
Other xmu internal not for end user:
umxModel()
,
umxRenameMatrix()
,
umx_APA_pval()
,
umx_fun_mean_sd()
,
umx_get_bracket_addresses()
,
umx_make()
,
umx_standardize()
,
umx_string_to_algebra()
,
xmuHasSquareBrackets()
,
xmuLabel_MATRIX_Model()
,
xmuLabel_Matrix()
,
xmuLabel_RAM_Model()
,
xmuMI()
,
xmuMakeDeviationThresholdsMatrices()
,
xmuMakeOneHeadedPathsFromPathList()
,
xmuMakeTwoHeadedPathsFromPathList()
,
xmuMaxLevels()
,
xmuMinLevels()
,
xmuPropagateLabels()
,
xmuRAM2Ordinal()
,
xmuTwinSuper_Continuous()
,
xmuTwinSuper_NoBinary()
,
xmu_CI_merge()
,
xmu_CI_stash()
,
xmu_DF_to_mxData_TypeCov()
,
xmu_PadAndPruneForDefVars()
,
xmu_bracket_address2rclabel()
,
xmu_cell_is_on()
,
xmu_check_levels_identical()
,
xmu_check_needs_means()
,
xmu_check_variance()
,
xmu_clean_label()
,
xmu_data_missing()
,
xmu_data_swap_a_block()
,
xmu_describe_data_WLS()
,
xmu_dot_make_paths()
,
xmu_dot_make_residuals()
,
xmu_dot_maker()
,
xmu_dot_move_ranks()
,
xmu_dot_rank_str()
,
xmu_extract_column()
,
xmu_get_CI()
,
xmu_lavaan_process_group()
,
xmu_make_TwinSuperModel()
,
xmu_make_bin_cont_pair_data()
,
xmu_make_mxData()
,
xmu_match.arg()
,
xmu_name_from_lavaan_str()
,
xmu_path2twin()
,
xmu_path_regex()
,
xmu_print_algebras()
,
xmu_rclabel_2_bracket_address()
,
xmu_safe_run_summary()
,
xmu_set_sep_from_suffix()
,
xmu_show_fit_or_comparison()
,
xmu_simplex_corner()
,
xmu_standardize_ACEcov()
,
xmu_standardize_ACEv()
,
xmu_standardize_ACE()
,
xmu_standardize_CP()
,
xmu_standardize_IP()
,
xmu_standardize_RAM()
,
xmu_standardize_SexLim()
,
xmu_standardize_Simplex()
,
xmu_start_value_list()
,
xmu_starts()
,
xmu_summary_RAM_group_parameters()
,
xmu_twin_add_WeightMatrices()
,
xmu_twin_check()
,
xmu_twin_get_var_names()
,
xmu_twin_make_def_means_mats_and_alg()
,
xmu_twin_upgrade_selDvs2SelVars()
Examples
## Not run:
data(twinData) # ?twinData from Australian twins.
twinData[, c("ht1", "ht2")] = twinData[, c("ht1", "ht2")] * 10
mzData = twinData[twinData$zygosity %in% "MZFF", ]
dzData = twinData[twinData$zygosity %in% "DZFF", ]
# m1 = umxACE(selDVs= "ht", sep= "", dzData= dzData, mzData= mzData, autoRun= FALSE)
# m2 = xmuTwinUpgradeMeansToCovariateModel(m1, fullVars = c("ht1", "ht2"),
# fullCovs = c("age1", "sex1", "age2", "sex2"), sep = "")
## End(Not run)