document_term_matrix {udpipe} | R Documentation |
Create a document/term matrix
Description
Create a document/term matrix from either
a data.frame with 1 row per document/term as returned by
document_term_frequencies
a list of tokens from e.g. from package sentencepiece, tokenizers.bpe or just by using strsplit
an object of class DocumentTermMatrix or TermDocumentMatrix from the tm package
an object of class simple_triplet_matrix from the slam package
a regular dense matrix
Usage
document_term_matrix(x, vocabulary, weight = "freq", ...)
## S3 method for class 'data.frame'
document_term_matrix(x, vocabulary, weight = "freq", ...)
## S3 method for class 'matrix'
document_term_matrix(x, ...)
## S3 method for class 'integer'
document_term_matrix(x, ...)
## S3 method for class 'numeric'
document_term_matrix(x, ...)
## Default S3 method:
document_term_matrix(x, vocabulary, ...)
## S3 method for class 'DocumentTermMatrix'
document_term_matrix(x, ...)
## S3 method for class 'TermDocumentMatrix'
document_term_matrix(x, ...)
## S3 method for class 'simple_triplet_matrix'
document_term_matrix(x, ...)
Arguments
x |
a data.frame with columns doc_id, term and freq indicating how many times a term occurred in that specific document. This is what |
vocabulary |
a character vector of terms which should be present in the document term matrix even if they did not occur in |
weight |
a column of |
... |
further arguments currently not used |
Value
an sparse object of class dgCMatrix with in the rows the documents and in the columns the terms containing the frequencies
provided in x
extended with terms which were not in x
but were provided in vocabulary
.
The rownames of this resulting object contain the doc_id from x
Methods (by class)
-
data.frame
: Construct a document term matrix from a data.frame with columns doc_id, term, freq -
matrix
: Construct a sparse document term matrix from a matrix -
integer
: Construct a sparse document term matrix from an named integer vector -
numeric
: Construct a sparse document term matrix from a named numeric vector -
default
: Construct a document term matrix from a list of tokens -
DocumentTermMatrix
: Convert an object of classDocumentTermMatrix
from the tm package to a sparseMatrix -
TermDocumentMatrix
: Convert an object of classTermDocumentMatrix
from the tm package to a sparseMatrix with the documents in the rows and the terms in the columns -
simple_triplet_matrix
: Convert an object of classsimple_triplet_matrix
from the slam package to a sparseMatrix
See Also
sparseMatrix
, document_term_frequencies
Examples
x <- data.frame(doc_id = c(1, 1, 2, 3, 4),
term = c("A", "C", "Z", "X", "G"),
freq = c(1, 5, 7, 10, 0))
document_term_matrix(x)
document_term_matrix(x, vocabulary = LETTERS)
## Example on larger dataset
data(brussels_reviews_anno)
x <- document_term_frequencies(brussels_reviews_anno[, c("doc_id", "lemma")])
dtm <- document_term_matrix(x)
dim(dtm)
x <- document_term_frequencies(brussels_reviews_anno[, c("doc_id", "lemma")])
x <- document_term_frequencies_statistics(x)
dtm <- document_term_matrix(x)
dtm <- document_term_matrix(x, weight = "freq")
dtm <- document_term_matrix(x, weight = "tf_idf")
dtm <- document_term_matrix(x, weight = "bm25")
x <- split(brussels_reviews_anno$lemma, brussels_reviews_anno$doc_id)
dtm <- document_term_matrix(x)
## example showing the vocubulary argument
## allowing you to making sure terms which are not in the data are provided in the resulting dtm
allterms <- unique(x$term)
dtm <- document_term_matrix(head(x, 1000), vocabulary = allterms)
## example for a list of tokens
x <- list(doc1 = c("aa", "bb", "cc", "aa", "b"),
doc2 = c("bb", "bb", "dd", ""),
doc3 = character(),
doc4 = c("cc", NA),
doc5 = character())
document_term_matrix(x)
dtm <- document_term_matrix(x, vocabulary = c("a", "bb", "cc"))
dtm <- dtm_conform(dtm, rows = c("doc1", "doc2", "doc7"), columns = c("a", "bb", "cc"))
data(brussels_reviews)
x <- strsplit(setNames(brussels_reviews$feedback, brussels_reviews$id), split = " +")
x <- document_term_matrix(x)
##
## Example adding bigrams/trigrams to the document term matrix
## Mark that this can also be done using ?dtm_cbind
##
library(data.table)
x <- as.data.table(brussels_reviews_anno)
x <- x[, token_bigram := txt_nextgram(token, n = 2), by = list(doc_id, sentence_id)]
x <- x[, token_trigram := txt_nextgram(token, n = 3), by = list(doc_id, sentence_id)]
x <- document_term_frequencies(x = x,
document = "doc_id",
term = c("token", "token_bigram", "token_trigram"))
dtm <- document_term_matrix(x)
##
## Convert dense matrix to sparse matrix
##
x <- matrix(c(0, 0, 0, 1, NA, 3, 4, 5, 6, 7), nrow = 2)
x
dtm <- document_term_matrix(x)
dtm
x <- matrix(c(0, 0, 0, 0.1, NA, 0.3, 0.4, 0.5, 0.6, 0.7), nrow = 2)
x
dtm <- document_term_matrix(x)
dtm
x <- setNames(c(TRUE, NA, FALSE, FALSE), c("a", "b", "c", "d"))
x <- as.matrix(x)
dtm <- document_term_matrix(x)
dtm
##
## Convert vectors to sparse matrices
##
x <- setNames(-3:3, c("a", "b", "c", "d", "e", "f"))
dtm <- document_term_matrix(x)
dtm
x <- setNames(runif(6), c("a", "b", "c", "d", "e", "f"))
dtm <- document_term_matrix(x)
dtm
##
## Convert lists to sparse matrices
##
x <- list(a = c("some", "set", "of", "words"),
b1 = NA,
b2 = NA,
c1 = character(),
c2 = 0,
d = c("words", "words", "words"))
dtm <- document_term_matrix(x)
dtm