tvma_3trt {tvmediation} | R Documentation |
Time Varying Mediation Function: Continuous Outcome and Three Treatment Groups
Description
Function to estimate the time-varying mediation effect and bootstrap standard errors for three treatment groups and a continuous outcome.
Usage
tvma_3trt(
T1,
T2,
t.seq,
mediator,
outcome,
t.est = t.seq,
plot = FALSE,
CI = "boot",
replicates = 1000,
grpname = "T",
verbose = FALSE
)
Arguments
T1 |
a vector indicating assignment to treatment 1 |
T2 |
a vector indicating assignment to treatment 2 |
t.seq |
a vector of time points for each observation |
mediator |
matrix of mediator values in wide format |
outcome |
matrix of outcome values in wide format |
t.est |
a vector of time points at which to make the estimation. Default = t.seq. (OPTIONAL ARGUMENT) |
plot |
TRUE or FALSE for plotting mediation effect. Default = "FALSE". (OPTIONAL ARGUMENT) |
CI |
"none" or "boot" method of deriving confidence intervals. Default = "boot". (OPTIONAL ARGUMENT) |
replicates |
number of replicates for bootstrapping confidence intervals. Default = 1000. (OPTIONAL ARGUMENT) |
grpname |
name of the treatment arms (exposure groups) to be displayed in the results. Default = "T". (OPTIONAL ARGUMENT) |
verbose |
TRUE or FALSE for printing results to screen. Default = "FALSE". (OPTIONAL ARGUMENT) |
Value
hat.alpha1 |
estimated Treatment 1 effect on mediator |
CI.lower.alpha1 |
CI lower limit for estimated coefficient hat.alpha1 |
CI.upper.alpha1 |
CI upper limit for estimated coefficient hat.alpha1 |
hat.alpha2 |
estimated Treatment 2 effect on mediator |
CI.lower.alpha2 |
CI lower limit for estimated coefficient hat.alpha2 |
CI.upper.alpha2 |
CI upper limit for estimated coefficient hat.alpha2 |
hat.gamma1 |
estimated Treatment 1 direct effect on outcome |
CI.lower.gamma1 |
CI lower limit for estimated coefficient hat.gamma1 |
CI.upper.gamma1 |
CI upper limit for estimated coefficient hat.gamma1 |
hat.gamma2 |
estimated Treatment 2 direct effect on outcome |
CI.lower.gamma2 |
CI lower limit for estimated coefficient hat.gamma2 |
CI.upper.gamma2 |
CI upper limit for estimated coefficient hat.gamma2 |
hat.tau1 |
estimated Treatment 1 total effect on outcome |
CI.lower.tau1 |
CI lower limit for estimated coefficient hat.tau1 |
CI.upper.tau1 |
CI upper limit for estimated coefficient hat.tau1 |
hat.tau2 |
estimated Treatment 2 total effect on outcome |
CI.lower.tau2 |
CI lower limit for estimated coefficient hat.tau2 |
CI.upper.tau2 |
CI upper limit for estimated coefficient hat.tau2 |
hat.beta |
estimated mediator effect on outcome |
CI.lower.beta |
CI lower limit for estimated coefficient hat.beta |
CI.upper.beta |
CI upper limit for estimated coefficient hat.beta |
hat.mediation1 |
time varying mediation effect for Treatment 1 on outcome |
SE_MedEff1 |
estimated standard errors of hat.mediation1 |
CI.upper.T1 |
CI upper limit for hat.mediation1 |
CI.lower.T1 |
CI lower limit for hat.mediation1 |
hat.mediation2 |
time varying mediation effect for Treatment 2 on outcome |
SE_MedEff2 |
estimated standard errors of hat.mediation2 |
CI.upper.T2 |
CI upper limit for hat.mediation2 |
CI.lower.T2 |
CI lower limit for hat.mediation2 |
Plot Returns
plot1_a1
plot for hat.alpha1 with CIs over t.estplot2_a2
plot for hat.alpha2 with CIs over t.estplot3_g1
plot for hat.gamma1 with CIs over t.estplot4_g2
plot for hat.gamma2 with CIs over t.estplot5_t1
plot for hat.tau1 with CIs over t.estplot6_t2
plot for hat.tau2 with CIs over t.estplot7_b
plot for hat.beta with CIs over t.estMedEff_T1
plot for hat.mediation1 over t.estMedEff_T2
plot for hat.mediation2 over t.estMedEff_CI_T1
plot for hat.mediation1 with CIs over t.estMedEff_CI_T2
plot for hat.mediation2 with CIs over t.est
References
Fan, J. and Gijbels, I. Local polynomial modelling and its applications: Monographs on statistics and applied probability 66. CRC Press; 1996.
Fan J, Zhang W. Statistical Estimation in Varying Coefficient Models. The Annals of Statistics. 1999;27(5):1491-1518.
Fan J, Zhang JT. Two-step estimation of functional linear models with applications to longitudinal data. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2000;62(2):303-322.
Cai X, Coffman DL, Piper ME, Li R. Estimation and inference for the mediation effect in a time-varying mediation model. BMC Med Res Methodol. 2022;22(1):1-12.
Baker TB, Piper ME, Stein JH, et al. Effects of Nicotine Patch vs Varenicline vs Combination Nicotine Replacement Therapy on Smoking Cessation at 26 Weeks: A Randomized Clinical Trial. JAMA. 2016;315(4):371.
B. Efron, R. Tibshirani. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy. Statistical Science. 1986;1(1):54-75.
Examples
## Not run: data(smoker)
# GENERATE WIDE FORMATTED MEDIATORS
mediator <- LongToWide(smoker$SubjectID,
smoker$timeseq,
smoker$NegMoodLst15min)
# GENERATE WIDE FORMATTED OUTCOMES
outcome <- LongToWide(smoker$SubjectID,
smoker$timeseq,
smoker$cessFatig)
# GENERATE TWO BINARY TREATMENT VARIABLES
NRT1 <- as.numeric(unique(smoker[,c("SubjectID","varenicline")])[,2])-1
NRT2 <- as.numeric(unique(smoker[,c("SubjectID","comboNRT")])[,2])-1
# GENERATE A VECTOR OF UNIQUE TIME POINTS
t.seq <- sort(unique(smoker$timeseq))
# COMPUTE TIME VARYING MEDIATION ANALYSIS USING BOOTSTRAPPED CONFIDENCE INTERVALS
results <- tvma_3trt(NRT1, NRT2, t.seq, mediator, outcome)
# COMPUTE TIME VARYING MEDIATION ANALYSIS FOR SPECIFIED POINTS IN TIME USING 250 REPLICATES
results <- tvma_3trt(NRT1, NRT2, t.seq, mediator, outcome,
t.est = c(0.2, 0.4, 0.6, 0.8),
replicates = 250)
## End(Not run)