tvma {tvmediation} | R Documentation |
Time Varying Mediation Function: Continuous Outcome and Two Treatment Groups
Description
Function to estimate the time-varying mediation effect and bootstrap standard errors for two treatment groups and a continuous outcome.
Usage
tvma(
treatment,
t.seq,
mediator,
outcome,
t.est = t.seq,
plot = FALSE,
CI = "boot",
replicates = 1000,
verbose = FALSE
)
Arguments
treatment |
a vector indicating treatment group |
t.seq |
a vector of time points for each observation |
mediator |
matrix of mediator values in wide format |
outcome |
matrix of outcome values in wide format |
t.est |
a vector of time points at which to estimate. Default = t.seq (OPTIONAL ARGUMENT) |
plot |
TRUE or FALSE for producing plots. Default = "FALSE" (OPTIONAL ARGUMENT) |
CI |
"none" or "boot" method of deriving confidence intervals. Default = "boot" (OPTIONAL ARGUMENT) |
replicates |
number of replicates for bootstrapping confidence intervals. Default = 1000 (OPTIONAL ARGUMENT) |
verbose |
TRUE or FALSE for printing results to screen. Default = "FALSE" (OPTIONAL ARGUMENT) |
Value
hat.alpha |
estimated time-varying treatment effect on mediator |
CI.lower.alpha |
CI lower limit for estimated coefficient hat.alpha |
CI.upper.alpha |
CI upper limit for estimated coefficient hat.alpha |
hat.gamma |
estimated time-varying treatment effect on outcome (direct effect) |
CI.lower.gamma |
CI lower limit for estimated coefficient hat.gamma |
CI.upper.gamma |
CI upper limit for estimated coefficient hat.gamma |
hat.beta |
estimated time-varying effect of the mediator on outcome |
CI.lower.beta |
CI lower limit for estimated coefficient hat.beta |
CI.upper.beta |
CI upper limit for estimated coefficient hat.beta |
hat.tau |
estimated time-varying treatment effect on outcome (total effect) |
CI.lower.tau |
CI lower limit for estimated coefficient hat.tau |
CI.upper.tau |
CI upper limit for estimated coefficient hat.tau |
est.M |
time varying mediation effect |
boot.se.m |
estimated standard error for est.M |
CI.lower |
CI lower limit for est.M |
CI.upper |
CI upper limit for est.M |
Plot Returns
Alpha_CI
plot for hat.alpha with CIs over t.estGamma_CI
plot for hat.gamma with CIs over t.estBeta_CI
plot for hat.beta with CIs over t.estTau_CI
plot for hat.tau with CIs over t.estMedEff
plot for est.M over t.estMedEff_CI
plot for est.M with CIs over t.est
Note
** IMPORTANT ** An alternate way of formatting the data and calling the function is documented in detail in the tutorial for the tvmb() function.
References
Fan, J. and Gijbels, I. Local polynomial modelling and its applications: Monographs on statistics and applied probability 66. CRC Press; 1996.
Fan J, Zhang W. Statistical Estimation in Varying Coefficient Models. The Annals of Statistics. 1999;27(5):1491-1518.
Fan J, Zhang JT. Two-step estimation of functional linear models with applications to longitudinal data. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2000;62(2):303-322.
Cai X, Coffman DL, Piper ME, Li R. Estimation and inference for the mediation effect in a time-varying mediation model. BMC Med Res Methodol. 2022;22(1):1-12.
Baker TB, Piper ME, Stein JH, et al. Effects of Nicotine Patch vs Varenicline vs Combination Nicotine Replacement Therapy on Smoking Cessation at 26 Weeks: A Randomized Clinical Trial. JAMA. 2016;315(4):371.
B. Efron, R. Tibshirani. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy. Statistical Science. 1986;1(1):54-75.
Examples
## Not run: data(smoker)
# REDUCE DATA SET TO ONLY 2 TREATMENT CONDITIONS (EXCLUDING COMBINATION NRT)
smoker.sub <- smoker[smoker$treatment != 4, ]
# GENERATE WIDE FORMATTED MEDIATORS
mediator <- LongToWide(smoker.sub$SubjectID,
smoker.sub$timeseq,
smoker.sub$NegMoodLst15min)
# GENERATE WIDE FORMATTED OUTCOMES
outcome <- LongToWide(smoker.sub$SubjectID,
smoker.sub$timeseq,
smoker.sub$cessFatig)
# GENERATE A BINARY TREATMENT VARIABLE
trt <- as.numeric(unique(smoker.sub[,c("SubjectID","varenicline")])[,2])-1
# GENERATE A VECTOR OF UNIQUE TIME POINTS
t.seq <- sort(unique(smoker.sub$timeseq))
# COMPUTE TIME VARYING MEDIATION ANALYSIS USING BOOTSTRAPPED CONFIDENCE INTERVALS
results <- tvma(trt, t.seq, mediator, outcome)
# COMPUTE TIME VARYING MEDIATION ANALYSIS FOR SPECIFIED POINTS IN TIME USING 250 REPLICATES
results <- tvma(trt, t.seq, mediator, outcome,
t.est = c(0.2, 0.4, 0.6, 0.8),
replicates = 250)
## End(Not run)