mtvgarch {tvgarch} | R Documentation |
Estimate a multivariate TV-GARCH-X model
Description
Equation by equation estimation of a multivariate multiplicative TV-GARCH-X model with dnamic conditional correlations. For each variance equation, the long-term or unconditional component (TV) and the short-term or conditional variance component (GARCH-X) are estimated separately using maximization by parts, where the iterative algorithm proceeds until convergence. Conditional on the variance estimates, the dynamic conditional correlations are estimated by maximum likelihood.
Usage
mtvgarch(y, order.g = c(1, 1), order.h = NULL, order.x = NULL,
initial.values = list(), xtv = NULL, xreg = NULL, opt = 2, upper.speed = NULL,
tvgarch = FALSE, dcc = FALSE, turbo = TRUE, trace = FALSE)
Arguments
y |
numeric matrix, time series or |
order.g |
integer matrix with each row indicating the order.g for each series; number of locations in each transition function of the TV components. |
order.h |
integer matrix with each row indicating the order.h for each
series; the first column controls the GARCH order, the second the ARCH order and
the third the asymmetry order of the GARCH-X components. If |
order.x |
|
initial.values |
a list containing the initial parameter values passed on
to the optimisation routines (constrOptim for the TV component and
nlminb for the GARCH-X component). If list(), the default, then the
values are chosen automatically. TV component: |
xtv |
|
xreg |
numeric vector, time series or zoo object to include as covariates in the GARCH-X component. |
opt |
integer indicating whether the speed parameter in the TV component should be scaled. If 0, no scaling; if 1, speed/sd(xtv); if 2, exp(speed). |
upper.speed |
|
tvgarch |
|
dcc |
logical. If |
turbo |
logical. If |
trace |
logical. If |
Value
An object of class 'mtvgarch'.
Author(s)
Susana Campos-Martins
References
Cristina Amado and Timo Terasvirta (2013) Modelling volatility by variance decomposition, Journal of Econometrics 175, 142-153.
Susana Campos-Martins and Genaro Sucarrat (2024) Modeling Nonstationary Financial Volatility with the R Package tvgarch, Journal of Statistical Software 108, 1-38.
Christian Francq and Jean-Michel Zakoian (2016) Estimating multivariate volatility models equation by equation, J. R. Stat. Soc. Ser. B Stat. Methodol 78, 613-635.
Robert F. Engle (2002) Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models, Journal of Business and Economic Statistics 20, 339-350.
See Also
tvgarch
,
garchx
,
nlminb
,
constrOptim
Examples
set.seed(12345)
## Simulate from a bivariate CCC-TV(1)-GARCH(1,1) model (default):
mySim <- mtvgarchSim(n = 1000)
## Estimate a CCC-TV(1)-GARCH(1,1) model (default):
myEst <- mtvgarch(y = mySim)
## Print estimation results:
print(myEst)
## Extract coefficients:
coef(myEst)
## Plot conditional volatilities:
plot(myEst)
## Generate predictions:
predict(myEst)