| forecast {tvReg} | R Documentation |
Forecast Methods for Objects in tvReg.
Description
forecast calculates the forecast for objects with class attribute tvlm, tvar,
tvvar, tvirf, tvsure and tvplm. If the
smoothing variable (z) in the model is non-NULL and it is a random
variable then use function predict with parameter newz.
Usage
forecast(object, ...)
## S3 method for class 'tvlm'
forecast(object, newdata, n.ahead = 1, winsize = 0, ...)
## S3 method for class 'tvar'
forecast(object, n.ahead = 1, newz = NULL, newexogen = NULL, winsize = 0, ...)
## S3 method for class 'tvvar'
forecast(object, n.ahead = 1, newz = NULL, newexogen = NULL, winsize = 0, ...)
## S3 method for class 'tvsure'
forecast(object, newdata, n.ahead = 1, winsize = 0, ...)
## S3 method for class 'tvplm'
forecast(object, newdata, n.ahead = 1, winsize = 0, ...)
Arguments
object |
An object used to select a method. |
... |
Other parameters passed to specific methods. |
newdata |
A matrix or data.frame with the values of the regressors to use for forecasting. |
n.ahead |
A scalar with the forecast horizon, value 1 by default. |
winsize |
A scalar. If 0 then an 'increase window' forecasting is performed. Otherwise a 'rolling window' forecasting is performed with window size given by 'winsize'. |
newz |
A vector with the new values of the smoothing variable. |
newexogen |
A matrix or vector with the new values of the exogenous variables. Only for predictions of *tvar* and *tvvar* objects. |
Value
An object of class matrix or vector with the same dimensions than the dependent
variable of object.
See Also
Examples
data("RV")
RV2 <- head(RV, 2001)
TVHAR <- tvLM (RV ~ RV_lag + RV_week + RV_month, data = RV2, bw = 20)
newdata <- cbind(RV$RV_lag[2002:2004], RV$RV_week[2002:2004],
RV$RV_month[2002:2004])
forecast(TVHAR, newdata, n.ahead = 3)
data("RV")
exogen = RV[1:2001, c("RV_week", "RV_month")]
TVHAR2 <- tvAR(RV$RV_lag[1:2001], p = 1, exogen = exogen, bw = 20)
newexogen <- RV[2002:2004, c("RV_week", "RV_month")]
forecast(TVHAR2, n.ahead = 3, newexogen = newexogen)
data(usmacro, package = "bvarsv")
tvVAR.fit <- tvVAR(usmacro, p = 6, type = "const", bw = c(1.8, 20, 20))
forecast(tvVAR.fit, n.ahead = 10)
data("Kmenta", package = "systemfit")
eqDemand <- consump ~ price + income
eqSupply <- consump ~ price + farmPrice
system <- list(demand = eqDemand, supply = eqSupply)
tvOLS.fit <- tvSURE(system, data = Kmenta, est = "ll", bw = c(1.5, 1.5))
newdata <- data.frame(price = c(90, 100, 103), farmPrice = c(70, 95, 103),
income = c(82, 94, 115))
forecast(tvOLS.fit, newdata = newdata, n.ahead = 3)
data(OECD)
tvpols <- tvPLM(lhe~lgdp+pop65+pop14+public, index = c("country", "year"),
data = OECD, method = "pooling", bw = 8.9)
newdata <- OECD[c(7, 9), 4:7]
forecast(tvpols, newdata = newdata, n.ahead = 2)