forecast {tvReg} | R Documentation |
Forecast Methods for Objects in tvReg.
Description
forecast
calculates the forecast for objects with class attribute tvlm
, tvar
,
tvvar
, tvirf
, tvsure
and tvplm
. If the
smoothing variable (z) in the model is non-NULL and it is a random
variable then use function predict
with parameter newz
.
Usage
forecast(object, ...)
## S3 method for class 'tvlm'
forecast(object, newdata, n.ahead = 1, winsize = 0, ...)
## S3 method for class 'tvar'
forecast(object, n.ahead = 1, newz = NULL, newexogen = NULL, winsize = 0, ...)
## S3 method for class 'tvvar'
forecast(object, n.ahead = 1, newz = NULL, newexogen = NULL, winsize = 0, ...)
## S3 method for class 'tvsure'
forecast(object, newdata, n.ahead = 1, winsize = 0, ...)
## S3 method for class 'tvplm'
forecast(object, newdata, n.ahead = 1, winsize = 0, ...)
Arguments
object |
An object used to select a method. |
... |
Other parameters passed to specific methods. |
newdata |
A matrix or data.frame with the values of the regressors to use for forecasting. |
n.ahead |
A scalar with the forecast horizon, value 1 by default. |
winsize |
A scalar. If 0 then an 'increase window' forecasting is performed. Otherwise a 'rolling window' forecasting is performed with window size given by 'winsize'. |
newz |
A vector with the new values of the smoothing variable. |
newexogen |
A matrix or vector with the new values of the exogenous variables. Only for predictions of *tvar* and *tvvar* objects. |
Value
An object of class matrix or vector with the same dimensions than the dependent
variable of object
.
See Also
Examples
data("RV")
RV2 <- head(RV, 2001)
TVHAR <- tvLM (RV ~ RV_lag + RV_week + RV_month, data = RV2, bw = 20)
newdata <- cbind(RV$RV_lag[2002:2004], RV$RV_week[2002:2004],
RV$RV_month[2002:2004])
forecast(TVHAR, newdata, n.ahead = 3)
data("RV")
exogen = RV[1:2001, c("RV_week", "RV_month")]
TVHAR2 <- tvAR(RV$RV_lag[1:2001], p = 1, exogen = exogen, bw = 20)
newexogen <- RV[2002:2004, c("RV_week", "RV_month")]
forecast(TVHAR2, n.ahead = 3, newexogen = newexogen)
data(usmacro, package = "bvarsv")
tvVAR.fit <- tvVAR(usmacro, p = 6, type = "const", bw = c(1.8, 20, 20))
forecast(tvVAR.fit, n.ahead = 10)
data("Kmenta", package = "systemfit")
eqDemand <- consump ~ price + income
eqSupply <- consump ~ price + farmPrice
system <- list(demand = eqDemand, supply = eqSupply)
tvOLS.fit <- tvSURE(system, data = Kmenta, est = "ll", bw = c(1.5, 1.5))
newdata <- data.frame(price = c(90, 100, 103), farmPrice = c(70, 95, 103),
income = c(82, 94, 115))
forecast(tvOLS.fit, newdata = newdata, n.ahead = 3)
data(OECD)
tvpols <- tvPLM(lhe~lgdp+pop65+pop14+public, index = c("country", "year"),
data = OECD, method = "pooling", bw = 8.9)
newdata <- OECD[c(7, 9), 4:7]
forecast(tvpols, newdata = newdata, n.ahead = 2)